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Abstract

Modern data storage systems are extremely large and consist of several
tens or hundreds of nodes. In such systems, node failures are daily events, and
safeguarding data from them poses a serious design challenge. The focus of this
thesis is on the data reliability analysis of storage systems and, in particular, on
the effect of different design choices and parameters on the system reliability.

Data redundancy, in the form of replication or advanced erasure codes, is
used to protect data from node failures. By storing redundant data across
several nodes, the surviving redundant data on surviving nodes can be used
to rebuild the data lost by the failed nodes if node failures occur. As these
rebuild processes take a finite amount of time to complete, there exists a non-
zero probability of additional node failures during rebuild, which eventually
may lead to a situation in which some of the data have lost so much redun-
dancy that they become irrecoverably lost from the system. The average time
taken by the system to suffer an irrecoverable data loss, also known as the
mean time to data loss (MTTDL), is a measure of data reliability that is com-
monly used to compare different redundancy schemes and to study the effect
of various design parameters. The theoretical analysis of MTTDL, however, is
a challenging problem for non-exponential real-world failure and rebuild time
distributions and for general data placement schemes. To address this issue,
a methodology for reliability analysis is developed in this thesis that is based
on the probability of direct path to data loss during rebuild. The reliability
analysis is detailed in the sense that it accounts for the rebuild times involved,
the amounts of partially rebuilt data when additional nodes fail during rebuild,
and the fact that modern systems use an intelligent rebuild process that will
first rebuild the data having the least amount of redundancy left. Through
rigorous arguments and simulations it is established that the methodology
developed is well-suited for the reliability analysis of real-world data storage
systems. Applying this methodology to data storage systems with different
types of redundancy, various data placement schemes, and rebuild constraints,
the effect of the design parameters on the system reliability is studied.

When sufficient network bandwidth is available for rebuild processes, it is
shown that spreading the redundant data corresponding to the data on each
node across a higher number of other nodes and using a distributed and intel-

i



www.manaraa.com

ii Abstract

ligent rebuild process will improve the system MTTDL. In particular, declus-
tered placement, which corresponds to spreading the redundant data corre-
sponding to each node equally across all other nodes of the system, is found
to potentially have significantly higher MTTDL values than other placement
schemes, especially for large storage systems. This implies that more reliable
data storage systems can be designed merely by changing the data placement
without compromising on the storage efficiency or performance. The effect of
a limited network rebuild bandwidth on the system reliability is also analyzed,
and it is shown that, for certain redundancy schemes, spreading redundant
data across more number of nodes can actually have a detrimental effect on
reliability.

It is also shown that the MTTDL values are invariant in a large class of
node failure time distributions with the same mean. This class includes the
exponential distribution as well as the real-world distributions, such as Weibull
or gamma. This result implies that the system MTTDL will not be affected if
the failure distribution is changed to a corresponding exponential one with the
same mean. This observation is also of great importance because it suggests
that the MTTDL results obtained in the literature by assuming exponential
node failure distributions may still be valid for real-world storage systems
despite the fact that real-world failure distributions are non-exponential. In
contrast, it is shown that the MTTDL is sensitive to the node rebuild time
distribution.

A storage system reliability simulator is built to verify the theoretical re-
sults mentioned above. The simulator is sufficiently complex to perform all
required failure events and rebuild tasks in a storage system, to use real-world
failure and rebuild time distributions for scheduling failures and rebuilds, to
take into account partial rebuilds when additional node failures occur, and
to simulate different data placement schemes and compare their reliability.
The simulation results are found to match the theoretical predictions with
high confidence for a wide range of system parameters, thereby validating the
methodology of reliability analysis developed.

Keywords: data storage, reliability, MTTDL, data placement, erasure codes,
replication, simulation.
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Résumé

Les systèmes modernes de stockage de données sont de très grande taille
et se composent de plusieurs dizaines ou centaines d’éléments ou nœuds. Les
pannes de ces nœuds sont des événements quotidiens pour de tels systèmes,
d’où le défi qui consiste à protéger les données stockées contre ces pannes.
Cette thèse se concentre sur l’analyse de la fiabilité du stockage de données
et plus particulièrement de quelle façon différents choix de conception de ces
systèmes peuvent influencer cette fiabilité.

La redondance sert à protéger les données contre des pannes des noeuds
à l’aide de méthodes basées sur la replication ou des codes correcteurs. En
stockant ces données redondantes sur plusieurs nœuds, les nœuds survivants
servent à reconstruire les données perdues par ceux tombés en panne. Comme
le processus de reconstruction de ces données n’est pas instantané, il existe un
risque non nul que d’autres nœuds tombent en panne dans l’intervalle. Ceci
peut conduire à une perte des données si une part trop grande des données
redondantes est perdue. Le temps moyen jusqu’à ce qu’un tel système de sto-
ckage subisse une perte irrémédiable des données (MTTDL en anglais) est une
mesure de la fiabilité du système qui est communément utilisée pour compa-
rer différentes méthodes de redondance et étudier les effets de différents pa-
ramètres. Cependant, dans la pratique, une évaluation analytique de ce temps
moyen (MTTDL) reste un défi car les distributions des pannes et des temps
de reconstruction ne sont pas exponentielles ; en outre, ce MTTDL est aussi
influencé par les diverses méthodes de placement des données redondantes.

Cette thèse adresse ce problème en développant une méthodologie pour
l’analyse de la fiabilité de ces systèmes qui se base sur la probabilité de la
succession d’événements menant le plus directement à la perte de données
durant la reconstruction. L’analyse de la fiabilité tient compte des temps de
reconstruction, de la quantité de données partiellement reconstruites lorsque
de nouvelles pannes surviennent, et du fait que les systèmes actuels procèdent à
une reconstruction intelligente en commençant par les données qui bénéficient
de la redondance la plus faible. Une argumentation rigoureuse ainsi que des
simulations montrent que cette méthodologie est adaptée à l’analyse de la
fiabilité des systèmes de stockage pratiques. Cette méthodologie est ensuite
appliquée à des systèmes de stockage utilisant différents types de redondance,
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méthodes de placement, et contraintes de reconstruction, afin d’étudier l’effet
de ces paramètres sur la fiabilité du système.

Dès lors que le débit du réseau d’interconnexion des nœuds permet des
reconstructions intelligentes en parallèle, il ressort que la fiabilité du système
augmente avec le nombre de nœuds utilisés pour répartir la redondance des
données d’un nœud donné. En particulier, le placement dégroupé où la redon-
dance est répartie également sur tous les autres nœuds du système bénéfice
d’un MTTDL sensiblement supérieur à d’autres méthodes de placement, sur-
tout pour des systèmes de grande taille. Ceci implique que la fiabilité des
systèmes de stockage peut être améliorée simplement en changeant de méthode
de placement sans altérer l’efficacité ou la performance du stockage. L’effet sur
la fiabilité d’un débit limité du réseau est également analysé : pour certaines
méthodes de redondance, une répartition de la redondance sur davantage de
nœuds peut s’avérer alors préjudiciable.

Il est également démontré que le MTTDL est invariant pour une grande
classe de distributions des pannes avec la même moyenne. Cette classe in-
clus non seulement la distribution exponentielle mais également des distribu-
tions pratiques telles que Weibull et gamma. Ceci implique que le MTTDL
du système est inchangé si la distribution des pannes est remplacée par une
distribution exponentielle de même moyenne. Cette observation est très im-
portante vu les résultats de MTTDL obtenus précédemment dans la litérature
qui considèrent des distributions exponentielles des pannes, car ces résultats
deviennent valables pour des systèmes pratiques bien que les distributions pra-
tiques ne soient pas exponentielles. En revanche, il est démontré que le MTTDL
dépend du type de distribution utilisée pour le temps de reconstruction.

Afin de vérifier ces résultats théoriques, un simulateur a été développé pour
mesurer la fiabilité des systèmes de stockage. Ce simulateur est suffisamment
sophistiqué pour simuler les pannes et les reconstructions et utilise des distri-
butions pratiques pour les pannes et les temps de reconstruction, en tenant
compte des reconstructions partielles quand de nouvelles pannes surviennent,
et en permettant de choisir différentes méthodes de placement. Les résultats
des simulations correspondent aux résultats analytiques avec un haut degré de
confiance pour une large gamme de paramètres du système, et valident ainsi
la méthodologie choisie pour l’analyse de la fiabilité.

Mots-clés: stockage de données, fiabilité, MTTDL, placement des données,
codes correcteurs, replication, simulation.
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Introduction 1
In today’s information age, more and more information is created, captured,
stored, and replicated digitally – e-mails, photos, music, videos, medical records,
employee records, government records, weather data, scientific measurements,
online businesses, etc. – and the amount of new data created and stored is
increasing at an exponential rate [1]. According to a study done in 2008 by
the International Data Corporation (IDC), a market research and analysis
firm, the total amount of data stored in 2007 was 281 billion gigabytes (or 281
exabytes) and it is expected to increase tenfold in five years [1].

Designing data storage systems that can handle this huge amount of in-
formation presents many challenges, chief among which are guaranteeing re-
liability, that is, being able to store data without any loss even while several
components in the storage system may fail, providing high performance, that
is, achieving low latency and high speed in delivering a requested piece of stored
data to the user or writing a piece of user data to the system, and achieving
good storage and energy efficiency, that is, reducing the actual amount of stor-
age space used to store a certain amount of user data and the amount of energy
needed to write, read, and maintain a certain amount of data reliably over the
lifetime of the system.

In this thesis, we will focus on the reliability of data storage systems and,
in particular, how different design choices and parameters affect the system
reliability.

1.1 Motivation

Reliability of a data storage system corresponds to the data reliability, that is,
how reliable the system is in storing data. A perfectly reliable storage system
is one that never loses any data stored in it unless the data is explicitly deleted
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by the user. However very few devices can store data reliably for extremely
long periods of time. Compared to cave paintings and ancient scrolls that
have survived for thousands of years, today’s digital storage devices can hardly
survive for more than a few years [2, 3], let alone decades or centuries. The
inevitability of a data deluge and the unreliability of data storage devices pose
a serious design challenge in building reliable data storage systems.

One of the widely-used methods to improve data reliability is replication
of data on several storage devices [4]. As an example, consider a storage
system that consists of just two storage devices. These devices could be a
couple of hard disk drives, or a couple of tape drives, or even a couple of
computers (or storage nodes). All the data that is stored on one of the devices
is also replicated on the second device. Eventually, at some point in time,
one of the devices will fail. At this point, the failed device is replaced by
a new device and the surviving replica of the data from the other device is
copied to the new device. In this way, the system attempts to maintain two
replicas of the data at all times. Unfortunately, the replica restoration process
takes a finite amount of time and this gives rise to a non-zero probability of
failure of the second device during this time, leading to irrecoverable data
loss. As the time taken for a device to fail is random, the time taken for the
system to end up in irrecoverable data loss is also random. Understanding the
characteristics of the time to data loss and how it is affected by different system
designs and parameters can help in building more reliable storage systems.
However, the reliability analysis, that is, the characterization of the time to
data loss, for even such a simple storage system with two devices can be
quite cumbersome for general distributions of times to device failures and
times to rebuild devices. The reliability analysis becomes extremely non-trivial
especially for large systems with certain replica placement schemes or when
other forms of redundancy, such as erasure codes, are used.

In this thesis, we develop analytical techniques to overcome these challenges
in reliability analysis of data storage systems and propose methodologies to
analyze and compare different system designs in terms of reliability.

1.2 Related Work

This section provides an overview of some of the earlier work related to the
reliability analysis of data storage systems and how this thesis differs from or
improves upon the existing body of literature on this topic.

1.2.1 Replication-based Systems

The problem of using replication to reliably maintain state in a distributed
system for time spans that far exceed the lifetimes of individual replicas is
addressed in [4]. This scenario is relevant for any system consisting of a po-
tentially large and selectable number of replicated components, each of which
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may be unreliable, where the goal is to have enough replicas to keep the sys-
tem “alive” (meaning at least one replica is working or available) for a certain
expected period of time, i.e., the system’s lifetime. In particular, this applies
to recent efforts to build highly available storage systems based on the peer-
to-peer paradigm. The paper studies the impact of practical considerations,
such as storage and bandwidth limits on the system, and presents methods to
optimally choose system parameters so as to maximize lifetime. The analysis
presented reveals that, for most practical scenarios, it is better to invest the
available repair bandwidth in aggressively maintaining a small number of repli-
cas than in spreading it across a large number of replicas. Only one particular
replica placement scheme is considered, where the number of nodes is equal
to the number of replicas. The analysis also assumes the failure and rebuild
times to be independent and exponentially distributed. A drawback of the
continuous-time Markov chain based analysis presented in this paper is that it
cannot be easily extended to other placement schemes that employ distributed
rebuild strategies. This is because these schemes can enter into a combinato-
rially large number of different states leading to an extremely large Markov
model. Also, the use of such Markov models is not possible when the failure
and rebuild time distributions are non-exponential. In this thesis, we address
both these problems and develop an analytical framework that enables the re-
liability estimation of more general placement schemes under non-exponential
failure and rebuild time distributions.

1.2.2 Redundancy Placement

Replication-based decentralized storage systems, such as CFS [5], OceanStore [6],
Ivy [7], and Glacier [8], employ a variety of different strategies for replica place-
ment and maintenance. In architectures that employ distributed hash tables
(DHT), the choice of algorithm for data replication and maintenance can have a
significant impact on both performance and reliability [9]. The paper presents
a comparative analysis of replication algorithms that are based upon a spe-
cific DHT design. It also presents a novel maintenance algorithm for dynamic
replica placement and considers the reliability of the resulting designs at the
system level. That work proposes five different data placement schemes and
the most reliable scheme is shown to be the block placement scheme. In this
scheme, the system is divided into disjoint sets of r nodes and each set of r
nodes store r copies (replicas) of the same data, where r is the replication
factor. Similar results are also presented in [10]. However, the reliability anal-
ysis in these works is done for the case when there are no rebuild operations
performed. This is a serious drawback of the analysis as the rebuilds are a
crucial factor in determining the reliability of a system. As we will show in
this thesis, accounting for rebuild times leads to a more accurate reliability
analysis of practical storage systems.

Placement of redundant data with emphasis on erasure coding has been
considered in [11]. In that work, the comparison of the means time to data loss
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of different placement schemes have been done through simulations. However,
there is no analytical characterization of the mean times to data loss in terms
of the system parameters. In this thesis, we provide an analytical expression
for the mean time to data loss of different redundancy placement schemes in an
erasure-coded storage system that gives an insight into the effect of different
parameters on the system reliability.

1.2.3 Recovery Mechanism

Both the recovery mechanism and the replica placement scheme affect the reli-
ability of a system. Fast recovery mechanisms, such as rebuilding onto reserved
spare space on surviving storage nodes instead of on a new spare node, reduce
the window of vulnerability and improve the system reliability [12, 13, 14]. The
replica placement scheme also plays an important role in determining the du-
ration of rebuilds. In particular, distributing replicas over many storage nodes
in the system reduces the rebuild times, but also increases the exposure of data
to failure. For a replication factor of two, these two effects cancel out, and
therefore, all placement schemes have similar reliability [15]. The distributed
fast recovery scheme proposed in that work not only improves performance
during data recovery, but also improves reliability. However, their analysis is
based on an idealistic assumption that replica-sets (referred to as redundancy
sets and groups in [12, 13], and as objects in [14]) fail independently. In con-
trast, in our analysis we assume that nodes fail independently, and take into
account the correlations among different replica-sets that this induces. As we
show in this thesis, this leads to different results.

1.2.4 Failure and Rebuild Time Distributions

Several of the earliest works on the analysis of reliability of storage systems [16]
have assumed independent and exponentially distributed times to failure. A
vast majority of the publications have also assumed exponentially distributed
times to rebuild as this allows the use of continuous-time Markov chain models
to estimate the reliability of the system [4, 12, 14]. A few works have used other
probabilistic methods [9, 10], however, the probability of data loss in these
works is obtained for the case when there are no rebuild operations performed.
Publications based on real world failure data have shown that the distribution
of failures is neither exponential nor independent [3]. Failure distributions
other than exponential have been studied extensively through simulations [11,
13, 17]. In particular, it has been shown that the expected number of double
disk failures in RAID-5 systems within a given time period can vary depending
on the failure time distribution [17]. In contrast, we consider the expected time
to the first data loss event (which is equivalent to a double disk failure in case
of a RAID-5 system) and we show that it tends to be insensitive to the failure
time distribution. More generally, in this thesis, we show that the mean time
to data loss of a system tends to be insensitive to a large class of failure time
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distributions including, most importantly, the non-exponential distributions
that are observed in real-world storage nodes.

1.2.5 Network Rebuild Bandwidth Constraints

Dependence of system reliability on the data placement scheme without any
network rebuild bandwidth limitations has been studied extensively in the lit-
erature [10, 12, 13, 14, 15, 18]. Effect of network rebuild bandwidth constraints
on system reliability has been studied in [14]. Our results closely match the
mean time to data loss results of [14]. In addition, we derive closed form
expressions for the mean time to data loss and provide further insight into
the effect of placement schemes on the reliability behavior of systems under
network rebuild bandwidth constraints.

Other works in literature [19, 20] have proposed novel coding schemes that
address the problem of reducing the bandwidth usage during reconstruction.
The reliability analysis of these and other related works, however, have not
accounted for rebuild times.

1.3 Summary of Results

The following gives a brief summary of the results of this thesis:

• Developed a methodology for reliability analysis of data storage systems.

– such analysis was challenging due to several factors including

∗ the complexity of failure and rebuild processes of storage nodes
in a large-scale system

∗ the difficulty in using continuous-time Markov chain models for
data placement schemes that can enter into an extremely large
number of possible states due to failures and rebuilds

∗ the fact that real-world failure and rebuild time distributions
are not exponential

– due to the above mentioned challenges, time-consuming simulations
were required to study the reliability of large-scale storage systems

– the methodology developed enables one to assess system reliability
analytically and obtain greater insight into the effects of different
system designs and parameters on the reliability through closed-
form relations

• Showed that, when unlimited network rebuild bandwidth is available,
spreading redundant data (replicas or codewords) corresponding to each
storage node across more number of other nodes improves the mean time
to data loss (a measure of data reliability).
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• Established the applicability of the developed methodology to a wide
variety of failure and rebuild time distributions including, most impor-
tantly, real-world distributions.

• Studied the effect of limited network rebuild bandwidth on the system
reliability and showed that, for certain redundancy schemes, spreading
redundant data across more number of nodes can actually have a detri-
mental impact on reliability.

• Built a storage system simulator to verify the theoretical results de-
scribed above. The simulator was sufficiently complex

– to perform all required failure events and rebuild tasks in a storage
system

– to use real-world failure and rebuild time distributions for schedul-
ing failures and rebuilds

– to take into account partial rebuilds when additional node failures
occur

– to simulate different data placement schemes and compare their
reliability

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 describes the
modeling of data storage systems. The methodology of estimation of system
reliability is detailed in Chapter 3. Chapter 4 applies the reliability analysis
methodology developed in the previous chapter to replication-based systems
and shows how replica placement affects system reliability. Impact of rebuild
constraints on system reliability is analyzed in Chapter 5. The reliability anal-
ysis methodology is then applied to systems based on erasure-codes in Chap-
ter 6. Chapter 7 describes the simulator built to verify the theoretical results.
Finally, Chapter 8 concludes this thesis and points to possible directions for
future work.
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Modern data storage systems are complex in nature consisting of several com-
ponents of hardware and software. To perform a reliability analysis, we require
a model that abstracts the reliability behavior of this complex system and lends
itself to theoretical analysis, but at the same time, preserves the core features
that affect the system failures and rebuilds. In this chapter, we develop and
describe a relatively simple yet powerful model that captures the essential
reliability behavior of a storage system.

2.1 Storage System

The storage system is modeled as a collection of n identical storage nodes
each of which stores c amount of data. The storage nodes are identical in
the sense that their reliability behaviors are the same, that is, they have the
same time to failure distribution, the same read/write bandwidth available
for rebuild, and the same time to rebuild distributions. Most modern storage
systems today store data on the same type of storage devices and distribute
data equally across all devices for performance reasons. Therefore, this is a
reasonable modeling assumption for today’s storage systems. Future workload
optimized storage systems may store data on different types of devices and the
amount of data stored on a device may depend on its type [21]. If the data
stored on different types of devices are independent, that is, if different types
of devices do not share replicas or redundancies, such systems may be modeled
as consisting of a number of smaller independent storage subsystems each of
which are made of identical nodes storing equal amounts of data.

The total amount of data stored in the system is nc and this includes the
redundant data that is created to improve data reliability. For example, in a
two-way replicated system, the total data in the system, nc, consists of two

7
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Table 2.1: Parameters of a storage system

c amount of data stored on each storage node (bytes)
n number of storage nodes
1/λ mean time to failure of a storage node (s)
1/µ mean time to read/write c amount of data from/to a

node (s)

copies (replicas) of nc/2 amount of user data. By user data, we refer to the
data that the user of the storage system stores in the system. This excludes
the redundancies that the system creates within itself to improve the data
reliability. For example, in a three-way replicated system, the total amount of
user data is nc/3. In addition to the c amount of data that is stored, each node
is assumed to have sufficient spare space that may be used for a distributed
rebuild process when other nodes fails. Although the exact amount of spare
space required to handle all distributed rebuilds throughout the lifetime of the
system may depend on a number of factors, including node failure and rebuild
times, it can be shown to be of the order of c/n. The main parameters used
in the storage system model are listed in Table 2.1.

As the primary aim is to analyze the data reliability and all the data is
stored on storage nodes, only the failures and rebuilds of these storge nodes are
modeled. The outage of network resources used to access the storage nodes
is not explicitly modeled. Such an outage may cause one or more nodes to
become unreachable temporarily. In such cases, the affected nodes are said to
be unavailable. Nodes may also become unavailable for other reasons, such as,
software upgrades, node reboots, etc. [22].

To extend the lifetime of data far beyond the lifetimes of individual storage
nodes, the user data is stored along with redundant data. This redundancy
may be simple replicas of the user data or may be some form of erasure codes.
When a node failure occurs, the redundant data corresponding to the data on
the failed node may still be available on other surviving storage nodes. This
redundant data is then used to restore the lost data on a new replacement
node. This restoration (or rebuild) process can be of two types, namely, direct
rebuild, or distributed rebuild. In direct rebuild, the redundant data is read
from surviving nodes, the lost data is reconstructed in a streaming manner
(which may just involve copying, in the case of replication-based systems, or
some form of decoding, in the case of erasure codes based systems), and the
reconstructed data is directly stored on a new replacement node. In direct
rebuild, the read-write bandwidth of the new replacement node may typically
be the bottleneck for the rebuild process. In distributed rebuild, the redundant
data is read from surviving nodes, the lost data is reconstructed in a streaming
manner, and the reconstructed data is stored in the spare space of surviving
nodes (making sure that redundancies corresponding to the same piece of data
are not stored on the same node). Once all lost data has been restored, the
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newly restored data is transferred from the surviving nodes to a new node.
Distributed rebuild makes use of the read-write bandwidth available at all
relevant surviving nodes and is therefore typically faster than direct rebuild.

The rebuild process following each node failure takes a finite amount of
time and this leads to the possibility of additional node failures within this
time, which can lead to an increased loss of redundancy. For example, in a
three-way replicated system, a second node failure during the rebuild of the
first may (depending on the replica placement and on which nodes failed) lead
some data to lose its second copy. Most of the time, the rebuild processes
complete, and all lost redundancies are restored. However, eventually, a series
of catastrophic node failures occur that wipe out some data along with all its
redundancy. In this thesis, we refer to this situation as irrecoverable data loss,
or simply data loss. The time taken for a system to suffer data loss depends
on system parameters and is a random variable. In our reliability analysis, we
wish to estimate characteristics of this time to data loss and understand how
it is affected by various system parameters and designs.

2.2 Storage Node

Each storage node, in and of itself, is a fairly complex entity and comprises of
disks, memory, processor, network interface, and power supply. Any of these
components can fail and cause the node to either become temporarily unavail-
able or permanently fail. As an abstraction, the details of which component
failure led to a node failure is left out in our model. It is assumed that there
is some mechanism, such as regular pinging of each node, in place to detect
node failures as they occur. In large-scale storage systems, diagnosing the ex-
act cause of a detected node failure and fixing the problem immediately may
not be a viable option. Therefore, a detection of a node failure automatically
triggers a rebuild process to restore the data.

2.2.1 Node Unavailability vs. Node Failure

The difference between node failure and temporary unavailability is crucial to
the reliability model. Temporary node unavailability may result in temporary
data unavailability, that is, data may become temporarily unavailable but
not completely lost from the system. On the other hand, node failures may
result in irrecoverable data loss, which is a more serious issue. The primary
focus of this thesis will be on the study of irrecoverable data loss, although
some of methodologies developed may also be applicable to the study of data
unavailability.

As noted in [22], more than 90% of the node unavailabilities are transient
and do not last for more than 15 minutes. Furthermore, it is also observed that
the majority of these node unavailabilities are due to planned reboots, and that
unplanned reboots and other unknown events are only a small proportion of all
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events that cause nodes to become unavailable. As most of the unavailabilities
are transient, a node rebuild process is initiated only if a node stays unavailable
for more than 15 minutes [22]. In other word, node unavailabilities lasting
longer than a certain amount of time are treated as node failures.

2.2.2 Independence of Node Failures

Node unavailabilities have been observed to exhibit strong correlation that
may be due to short power outages in the datacenter, or part of rolling reboot
or upgrade activity at the datacenter management layer [22]. However, only
less than 10% of the node unavailabilities last longer than 15 minutes and are
treated as node failures which trigger a rebuild process. There is no indication
that correlations exist among such node failures. It has been argued that
disk (as opposed to node) replacement rates in large storage systems show
correlations [3]. However, as disks have been observed to be more reliable than
other components of a node [23], the failure of a node is mainly determined by
the failure of these other components. As there is no evidence that correlations
exist among node failures (or permanent unavailabilities), we assume node
failures to be independent in our model.

2.3 Redundancy

A data storage system is made of storage nodes that have relatively short
lifetimes. To extend the lifetime of user data far beyond the lifetimes of the
individual nodes, the system creates redundant data corresponding to the user
data and stores it across different nodes so that when node failures occur this
redundant data can be used to restore the data lost by the failed nodes.

One of the simplest forms of redundancy is replication. Given a replication
factor r, the system stores r copies of the user data in the system such that
no two copies are stored on the same node. Therefore, for a system storing a
total amount of data nc, the corresponding user data is only nc/r, resulting
in a storage efficiency of 1/r. Storage efficiency is defined as the ratio of the
amount of user data to the corresponding amount of data stored in the system.

Another form of redundancy are the so-called erasure codes, where the user
data is divided into blocks of a fixed size (or symbols) and each set of l blocks
is encoded into a set of m > l blocks, called a codeword, before storing them
on m distinct nodes. The encoding is done in such a way that some subset
of m symbols of a codeword can be used to decode the l symbols of user data
corresponding to that codeword. The storage efficiency of an erasure code
is clearly l/m. Optimal erasure codes or maximum distance separable codes
(MDS codes) have the property that any l out of m symbols can be used to
decode a codeword. This type of redundancy is called a (l,m)-erasure code.

Typically, the advantage of an erasure coded system over a replication-
based system is that it can offer much better reliability for the same storage
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efficiency, or much higher storage efficiency for the same reliability. The ad-
vantage of a replication-based system over an erasure coded system is in per-
formance. Erasure coded systems typically offer only one copy of the user data
whereas replication-based systems offer r copies. Furthermore, an update of
any one block of user data in an erasure code system will require reading of
the existing codeword corresponding to that block, updating that codeword
and writing the codeword back to the system. In contrast, an update of any
piece of user data just requires overwriting the existing replicas of that piece
in the system and does not require any additional reads or processing.

2.4 Data Placement

In a large storage system, the number of nodes, n, is typically much larger
than the replication factor, r, or the codeword length, m. Therefore, there
exist many ways in which r replicas or a codeword of m blocks can be stored
across n nodes.

2.4.1 Clustered Placement

If n is divisible by r (or m), one simple way would be to divide the n nodes
into disjoint sets of r (or m) nodes each and store the replicas (or codeword
blocks) across the nodes in each set. We refer to this type of data placement
as clustered placement, and each of these disjoint sets of nodes as clusters. It
can be seen that, in such a placement scheme, no clusters share replicas or
redundancies corresponding to data on another cluster. The storage system
can essentially be modeled as consisting of n/r (or n/m) independent clusters.
Reliability behavior of a cluster under exponential failure and rebuild time
distributions is well-known [4, 16]. The reliability analysis of cluster place-
ment is relatively straightforward compared to other more general placement
schemes because each cluster is independent of the others and can be modeled
by a continuous-time Markov chain when the failure and rebuild times are
assumed to be exponentially distributed. More general placement schemes,
however, can enter into a combinatorially large number of states leading to
an extremely large Markov model. In addition, real-world failure and rebuild
time distributions are known to be non-exponential [3], and this prevents one
from using Markov models for the analysis.

2.4.2 Declustered Placement

A placement scheme that can potentially offer far higher reliability than the
clustered placement scheme, especially as the number of nodes in the system
grows, is the declustered placement scheme. There exists

(
n
r

)
(or
(
n
m

)
) different

ways of placing r replicas of a user data block (or m symbols of a codeword) in
n nodes. In this scheme, all these

(
n
r

)
(or
(
n
m

)
) possible ways are equally used to
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store data. It can be seen that, in such a placement scheme, when a node fails,
the redundancy corresponding to the data on the failed node is equally spread
across the remaining surviving nodes. This allows one to use the rebuild read-
write bandwidth available at all surviving nodes to do a distributed rebuild in
parallel, which can be extremely fast when the number of nodes is large. In
contrast, in clustered placement scheme, when a node fails, the redundancy
corresponding to the data on the failed node is only spread across the remaining
nodes of a cluster. Therefore, a fast parallel rebuild process that scales with the
number of nodes is not possible for clustered placement. As it turns out, this
is one of the main reasons why declustered placement can offer significantly
higher reliability than clustered placement for large systems.

2.4.3 Spread Factor

A broader set of placement schemes can be defined using the concept of spread
factor. For each node in the system, its redundancy spread factor is defined as
the number of nodes over which the data on that node and its corresponding
redundant data are spread. In a replication-based (or erasure coded) system,
when a node fails, its spread factor determines the number of nodes which have
replicas of (or the codeword symbols corresponding to) the lost data, and this
in turn determines the degree of parallelism that can be used in rebuilding the
data lost by that node. In this thesis, we will consider symmetric placement
schemes in which the spread factor of each node is the same, denoted by k. In
a symmetric placement scheme, the r − 1 replicas of (or the m − 1 codeword
symbols corresponding to) the data on each node are equally spread across k−1
other nodes, the r−2 replicas of (or them−2 codeword symbols corresponding
to) the data shared by any two nodes are equally spread across k − 2 other
nodes, and so on. One example of such a symmetric placement scheme is
the clustered placement scheme for which the spread factor, k, is equal to
the replication factor, r (or the codeword length, m). Another example of a
symmetric placement scheme is the declustered placement scheme for which
the spread factor, k, is equal to the number of nodes, n. A number of different
placement schemes can be generated by varying the spread factor k. The
spread factor of a placement scheme is important in two ways: (a) it determines
the number of nodes over which data of a failed node is spread and therefore,
the degree of parallelism that can be used in the rebuild process of that node,
and (b) it determines the amount of data that becomes critical, that is, the
amount of data with the most number of replicas or codeword symbols lost,
which needs to be rebuilt first when additional node failures occur. It can
be seen that, any two nodes sharing replicas of some data, share replicas of
exactly r−1

k−1
c amount of user data. Likewise, any two nodes storing codeword

symbols of some data, store the codeword symbols of exactly m−1
k−1

c amount
of user data. In general, any set of ñ nodes (ñ ≤ r) sharing replicas of some
data, share replicas of exactly c

∏ñ−1
i=1

(
r−i
k−i

)
amount of user data. Similarly,
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any set of ñ nodes (ñ ≤ m) storing codeword symbols of some data, store the
codeword symbols corresponding to exactly c

∏ñ−1
i=1

(
m−i
k−i

)
amount of user data.

2.5 Node Failure

Based on the discussion in Section 2.2, the times to node failures are modeled
as independent and identically distributed random variables. Let TF denote
the time to failure of a node. Its cumulative distribution function is denoted
by Fλ(·), that is,

Fλ(t) := Pr{TF ≤ t}, t ≥ 0, (2.1)

its probability density function is denoted by fλ(·), that is,

fλ(t) :=
dFλ(t)

dt
, t ≥ 0, (2.2)

and its mean is denoted by 1/λ, that is,

1

λ
:=

∫ ∞

0

(1− Fλ(t))dt. (2.3)

Typically, Fλ is assumed to be exponential as this allows one to use Markov
models for analysis. However, it has been observed that real-world storage
devices do not have exponentially distributed failure times [3, 2]. This can
also be seen to be intuitively true because an exponentially distributed failure
time implies that the device has a constant failure rate independent of its
age. However, it is common experience that devices age over time and that
the failure rates of very old devices are much higher. It has been seen that
Weibull and gamma distributions are a much better fit to the empirical data
on storage device lifetimes [3]. It has also been noted that infant mortality,
that is, extremely short lifetimes, is not evident in real-world storage systems.
This may be due to pre-stressing devices before installing them in a system,
thereby making sure that devices with short lifetimes are discarded during the
pre-stressing process. An interesting result of this thesis is that the mean time
to data loss of a storage system tends to be invariant within a large class of
failure time distributions, that includes the exponential distribution and, most
importantly, real-world distributions like Weibull and gamma (see Chapter 3).

2.6 Node Rebuild

We will describe the node rebuild process in a replication-based system here.
The rebuild process for an erasure-coded system is the same except for the
fact that we have m codeword blocks instead of r replicas.

In a replication-based storage system, when nodes fail, data blocks lose one
or more of their r replicas. The purpose of the rebuild process is to recover all
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b b b

c
c

n−1

c

n−1

c

n−1

distributed rebuild from n− 1 nodes

– critical data

– non-critical data

– spare space

Figure 2.1: Example of the distributed rebuild model for a two-way replicated
system. When one node fails, the critical data blocks are equally spread across
the n− 1 surviving nodes. The distributed rebuild process creates replicas of
these critical blocks by copying them from one surviving node to another in
parallel.

replicas lost, so that all data have r replicas. A good rebuild process needs to
be both intelligent and distributed.

In an intelligent rebuild process, the system attempts to first recover the
replicas of the blocks that have the least number of replicas left. As an example,
consider a system that has D0, D1, · · · , De−1, and De distinct number of data
blocks which have lost 0, 1, · · · , e − 1, and e replicas, respectively, and no
blocks that have lost more than e replicas, for some e between 1 and r−1. An
intelligent rebuild process attempts to first create an additional copy of the
De blocks that have lost e replicas, because these are the blocks that are the
most vulnerable to data loss if additional nodes fail. If it is successful and if no
other failure occurs in between, then the system will have D0, D1, · · · , De−2,
and De−1 +De distinct data blocks which have lost 0, 1, · · · , e− 2, and e− 1
replicas, respectively. Then the rebuild process creates an additional copy of
the De−1+De data blocks and so forth until all replicas lost have been restored.
In contrast to the intelligent rebuild, one may consider a blind rebuild, where
lost replicas are being recovered in an order that is not specifically aimed at
recovering the data blocks with the least number of replicas first. Clearly, an
unintelligent rebuild is more vulnerable to data loss. In the remainder of the
paper we consider only intelligent rebuild.

In placement schemes such as the declustered scheme, the surviving replicas
that the system needs to read to recover the lost replicas may be spread across
several, or even all, surviving nodes. Broadly speaking, two approaches can be
taken when recovering the lost replicas: the data blocks to be rebuilt can be
read from all the nodes in which they are present, and either (i) copied directly
to a new node, or (ii) copied to (reserved) spare space in all surviving nodes
first and then to a new node. The latter method is referred to as distributed
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rebuild and has a clear advantage in terms of time to rebuild because it exploits
parallelism when writing to many (surviving) nodes versus writing to only one
(new) node. The time required to copy the restored data to the new node is
irrelevant from a data reliability point of view, as additional node failures that
occur after the lost replicas are restored do not cause the system to become
critical. As an example, consider a two-way replicated system with declustered
placement as shown in Fig. 2.1. When the first node fails, the surviving replicas
of the c amount of data on the failed node are spread equally across all the
remaining n − 1 nodes. A distributed rebuild process copies the replicas of
the critical data from one surviving node to another such that no two replicas
of the same data end up on the same node. Once the distributed rebuild is
complete, the system has two replicas of all data spread across n− 1 nodes. If
another node fails before the restored data is transferred to a new replacement
node, then some of the data lose only one replica; no data loses two replicas.
So it essentially functions as a system with n− 1 nodes, each with cn/(n− 1)
amount of data, until the restored data of the first failed node is fully copied
to a new replacement node.

During the rebuild process, an average read-write bandwidth of cµ bytes/s
is assumed to be reserved at each node exclusively for the rebuild. This implies
that the average time required to read (or write) c amount of data from (or
to) a node is equal to 1/µ. The average rebuild bandwidth is usually only a
fraction of the total bandwidth available at each node; the remainder is being
used to serve user requests. Let TR denote the time required to read (or write)
c amount of data from (or to) a node. Denote its cumulative distribution
function by Gµ(·), that is,

Gµ(t) := Pr{TR ≤ t}, t ≥ 0, (2.4)

and its probability density function by gµ(·), that is,

gµ(t) :=
dGµ(t)

dt
, t ≥ 0. (2.5)

In clustered placement, it is assumed that there are spare nodes, and when
a node fails, data is read from any one of the surviving nodes1 of the cluster
to which the failed node belonged and written to a spare node at an average
rate of cµ. Let T clus.

Rα
be the time taken to rebuild a fraction α of a node in

clustered placement, that is, read αc amount of data from one of the surviving
nodes of the cluster and write to a new node at an average rate of cµ. Denote
its mean by 1/µclus.

α . It is clear that

1

µclus.
α

=
α

µ
. (2.6)

Denote the cumulative distribution function of T clus.
Rα

by Gµclus.
α

(·), that is,

Gµclus.
α

(t) := Pr{T clus.
Rα

≤ t}, t ≥ 0. (2.7)
1In the case of an (l,m)-MDS code, the data is read from any l of the surviving nodes.
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In declustered placement, it is assumed that sufficient spare space is re-
served in each node for rebuild. During rebuild, the data to be rebuilt is read
from all surviving nodes and copied to the spare space reserved in these nodes
in such a way that no data block is copied to the spare space of a node in which
a copy of it is already present. Since data is being read from and written to
each surviving node, the total average read-write rebuild bandwidth cµ of each
node is equally split between the reads and the writes. So if there are ñ sur-
viving nodes, the total average speed of rebuild in the system is (ñcµ)/2. Let
T declus.
Rα

denote the time taken to rebuild a fraction α of a node in declustered
placement. Denote its mean by 1/µdeclus.

α . It is clear that

1

µdeclus.
α

=
α

(ñµ/2)
(2.8)

It can be seen by comparing (2.8) to (2.6) that the rebuild time for declus-
tered placement scheme can be much lesser than that for clustered placement
scheme for the same amount of data, especially for systems with a large num-
ber of storage nodes. Denote the cumulative distribution function of T declus.

Rα

by Gµdeclus.
α

(·), that is,

Gµdeclus.
α

(t) := Pr{T declus.
Rα

≤ t}, t ≥ 0. (2.9)

2.7 Failure and Rebuild Time Distributions

It is known that real world storage nodes are generally reliable, that is, the
mean time to repair a node (which is typically of the order of tens of hours)
is much smaller than the mean time to failure of a node (which is typically at
least of the order of thousands of hours). As 1/λ denotes the mean time to
failure of node and 1/µ denotes the mean time to read (or write) c amount of
data from (or to) a storage node, it follows that generally reliable nodes satisfy
the following condition:

1

µ
≪ 1

λ
, or

λ

µ
≪ 1. (2.10)

In the subsequent analysis, this condition implies that terms involving powers
of λ/µ greater than one are negligible compared to λ/µ and can be ignored.

Let the cumulative distribution functions Fλ and Gµ satisfy the following
condition:

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt ≪ 1, with
λ

µ
≪ 1. (2.11)

The results of this thesis are derived for the class of failure and rebuild distri-
butions that satisfy the above condition. In particular, the mean time to data
loss of a system is shown to be insensitive to the failure distributions within
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this class. This result is of great importance because it turns out that this con-
dition holds for a wide variety of failure and rebuild distributions including,
most importantly, distributions that are seen in real-world storage systems.

As an illustration, let us consider the class of failure distributions that
satisfy the above conditions, when the rebuild times are deterministic, that is,

Gµ(t) =

{
0, when t < 1/µ,
1, when t ≥ 1/µ.

(2.12)

Recognizing that Fλ is a monotonically non-decreasing function such that
Fλ(t) ≤ Fλ(1/µ) for t ≤ 1/µ, the left hand side of (2.11) reduces to

µ

∫ 1/µ

0

Fλ(t)dt ≤ Fλ(1/µ). (2.13)

When λ/µ ≪ 1, it can be seen that Fλ(1/µ) ≪ 1 for a wide variety of
distributions including exponential, Weibull (with shape parameter greater
than 1), and gamma (with shape parameter greater than 1). For instance,
consider a Weibull distribution with shape parameter k and scale parameter
β having the cumulative distribution function

FWeibull
λ (t) = 1− e−(t/β)k . (2.14)

The mean of the Weibull distribution, 1/λ, is equal to βΓ(1+1/k), where Γ(·)
denotes the gamma function. Therefore, the scale parameter β can be written
in terms of the mean 1/λ as

β = 1/(λΓ(1 + 1/k)). (2.15)

Substituting (2.15) in (2.14) for t = 1/µ we get

FWeibull
λ (1/µ) = 1− e−(λΓ(1+1/k)/µ)k ≪ 1, (2.16)

when λ/µ ≪ 1 and k ≥ 1. However, if k < 1, the above inequality may not
hold. Note that nodes that have Weibull lifetime distributions with k < 1 have
high infant mortality rate, whereas those with Weibull lifetime distributions
with k > 1 gracefully age over time.

In general, it can be observed that failure distributions with high infant
mortality rates do not satisfy condition (2.11). However, it has been observed
that infant mortality is not present in real world storage nodes [3]. Further-
more, the effects of infant mortality can be eliminated from the system by
stressing new nodes before adding them to the system. It can also be observed
that (2.11) is satisfied by a wide variety of distributions for rebuild times, in
particular, distributions with bounded support. Therefore, condition (2.11) is
realistic as it is satisfied by practical storage systems.

Condition (2.11) can also be stated in the following alternate way: if Fλ and
Gµ belong to a family of distributions characterized by λ and µ, respectively,
then (2.11) is equivalent to

lim
λ/µ→0

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt = 0. (2.17)
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For a fixed µ, this implies that

lim
1/λ→∞

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt = 0. (2.18)

As Fλ(t)(1 − Gµ(t)) ≤ 1 − Gµ(t) and 1 − Gµ(t) is integrable, by the domi-
nated convergence theorem, the order of limit and integral can be exchanged.
Therefore,

lim
1/λ→∞

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt = µ

∫ ∞

0

lim
1/λ→∞

Fλ(t)(1−Gµ(t))dt. (2.19)

Therefore, for a fixed µ, (2.18) holds only when

lim
1/λ→∞

Fλ(t) = 0, ∀ t where Gµ(t) < 1, (2.20)

and the convergence of Fλ is pointwise. Similarly, it can be shown that, for a
fixed λ, (2.17) holds only when

lim
1/µ→0

µ(1−Gµ(t)) = 0, ∀ t where Fλ(t) > 0, (2.21)

and the convergence is pointwise. Note that (2.20) and (2.21) can be equiva-
lently written as

Fλ(t) ≪ 1 when Gµ(t) < 1 and λ ≪ µ, (2.22)

µ(1−Gµ(t)) ≪ 1 when Fλ(t) > 0 and µ ≫ λ. (2.23)
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Reliability analysis of data storage systems is a non-trival problem for general
failure and rebuild time distributions and for general data placement schemes.
Traditional continuous-time Markov models based analysis is not applicable
to real-world failure and rebuild time distributions, which are observed to be
non-exponential [3], and for certain placement schemes such as the declustered
placement, even a continuous-time Markov model (under the assumption of
exponential distribution of failure and rebuild times) becomes extremely com-
plex.

To overcome these challenges, we develop a methodology for reliability
analysis in this chapter through a series of approximations each of which are
justified for generally reliable nodes and for failure and rebuild time distribu-
tions belonging to a certain broad class (see Section 2.7). This class of distri-
butions includes real-world distributions that are typically non-exponentially
and are modelled by Weibull or gamma distributions. The methodology de-
veloped is powerful enough to be applied to a wide variety of data placement
and redundancy schemes, and can also be used to study the impact of certain
constraints on the system during rebuild. The theoretical estimates of mean
times to data loss predicted using this methodology have also been shown
to match with simulations, which avoid all the approximations made in the
methodology, over a wide range of system parameters.

3.1 Measures of Reliability

In a replication-based system, a data loss is said to have occurred in the system
if all replicas of at least one data block have been lost and cannot be restored
by the system. Similarly, in an erasure coded system, a data loss is said to have
occurred when sufficient number of blocks of at least one codeword have been

19
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lost rendering the codeword(s) undecodeable. The time taken for a system
to end up in data loss is a random variable and the purpose of a reliability
analysis is to characterize this random variable and study how it is affected by
the different system parameters.

3.1.1 Reliability Function

If the time to data loss is denoted by TDL, the most general way to characterize
this random variable is by describing its cumulative distribution function, or
equivalently, its complementary cumulative distribution function (also known
as the reliability function) denoted by R(·):

R(t) := Pr{TDL > t}, t ≥ 0. (3.1)

The reliability function is a quantity of practical interest as it allows for de-
signing systems that can provide reliability guarantees over given periods of
interest. As an example, for a given time horizon T , for which the user intends
to store data reliably, the reliability function R(T ) corresponding to a certain
system design provides the probability that the system survives at least until T
without data loss. Although a very useful reliability measure, closed form ex-
pressions of the reliability functions are extremely non-trivial to obtain, except
for a handful of simple storage system models.

3.1.2 Mean Time to Data Loss (MTTDL)

Another measure of reliability is the mean time to data loss (MTTDL). It is
an aggregate measure of reliability and is related to the reliability function by
the following equation:

MTTDL =

∫ ∞

0

R(t)dt. (3.2)

Although not as directly applicable as the reliability function the MTTDL is
useful for assessing trade-offs, for comparing schemes, and for estimating the
effect of the various parameters on the system reliability [24, 25]. From a
theoretical perspective, as an aggregate measure, MTTDL is more amenable
to analysis compared to the reliability function. Therefore, in this thesis, we
use MTTDL as a measure of system reliability.

3.2 MTTDL Estimation

A few mathematical preliminaries that are needed for MTTDL estimation are
discussed below.
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3.2.1 Preliminaries

Node Availability

A node i operates for a certain period of time with distribution Fλ before
failing. Following the failure of a node, the node and all of its data is restored
after a period of time with distribution Gµ. Therefore, the timeline of the node
consists of successive periods of operation and repair. For t ≥ 0, let us define

ν
(i)
t :=

{
1, if node is operational at time t,
0, if node is under rebuild at time t.

(3.3)

Then the node availability at time t is given by the probability

a
(i)
t := Pr{ν(i)

t = 1}. (3.4)

The following result is well known in renewal theory [26, Chap. 2, pp. 109–
114]:

Lemma 3.1. The steady-state node availability a is given by

a := lim
t→∞

a
(i)
t =

1/λ

1/λ+ 1/µ
. (3.5)

Note that the above result indicates that the steady-state node availability
only depends on the means of the distributions Fλ and Gµ.

Age and Excess

Consider the timeline constructed by concatenating only the periods of oper-
ation of the node. In this timeline, let N

(i)
t be the number of replacements of

the node up to time t, and Sk be the time of the kth failure, for k = 1, 2, · · · .

node i
timeline

✲X
S
N

(i)
t

t
X
S
N

(i)
t +1

X
A

(i)
t E

(i)
t

Define the age A
(i)
t and the excess E

(i)
t of the node as

A
(i)
t := t− S

N
(i)
t

, (3.6)

E
(i)
t := S

N
(i)
t +1

− t. (3.7)

As can be seen in the above picture, at a given time t, the age A
(i)
t is equal to

the time that has passed since the last replacement of the node, and the excess
E

(i)
t is equal to the time until the next failure of the node. A well known result

in renewal theory is the following [26, Chapter 2, pp. 109–114]:

Lemma 3.2.

lim
t→∞

Pr{A(i)
t ≤ τ} = lim

t→∞
Pr{E(i)

t ≤ τ} = F̃λ(τ), (3.8)
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where

F̃λ(τ) := λ

∫ τ

0

(1− Fλ(x))dx. (3.9)

In other words, the cumulative distribution functions of A
(i)
t and E

(i)
t tend

to F̃λ as t tends to infinity. In fact, it can be shown that, if the probability
density function, fλ, corresponding to Fλ approaches zero exponentially fast,
then the distributions of A

(i)
t and E

(i)
t also approach F̃λ exponentially fast [26].

3.2.2 Probability of Data Loss during Rebuild

At any point of time, the system can be thought to be in one of two modes:
fully-operational mode and rebuild mode. During the fully-operational mode,
all data in the system has the original amount of redundancy and there is no
active rebuild process. During the rebuild mode, some data in the system has
less than the original amount of redundancy and there is an active rebuild
process that is trying to restore the lost redundancy. A transition from fully-
operational mode to rebuild mode occurs when a node fails; we refer to this
node failure that causes a transition from the fully-operational mode to the
rebuild mode as a first-node failure. Following a first-node failure, a complex
sequence of rebuilds and subsequent node failures may occur, which eventually
lead the system either to irrecoverable data loss, with probability PDL, or back
to the original fully-operational mode by restoring all replicas, with probability
1−PDL. In other words, the probability of data loss in the rebuild mode, PDL,
is defined as follows:

PDL := Pr





data loss occurs before
returning to the fully
-operational mode

∣∣∣∣∣∣
system enters
rebuild mode



 . (3.10)

As the rebuild times are much shorter than the times to failure, the time
taken for these complex sequence of events is negligible compared to the time
between successive first-node failures, and therefore can be ignored. In other
words, when computing the total time until data loss, the time spent by the
system in rebuild mode is negligible compared to the time spent by the system
in fully-operational mode and can therefore be ignored. This is due to the
fact that nodes are generally reliable, that is, their mean times to failure are
much larger compared to their mean times to rebuild (see Section 2.7). If we
ignore the rebuild times, the system timeline consists of one first-node failure
after another, each of which can end up in data loss with a probability PDL.
Therefore, if we can estimate the mean time between two successive first-node
failures, that is, the mean fully-operational period of the system, we can easily
compute the MTTDL using PDL.
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3.2.3 Mean Fully-Operational Period of the System

As mentioned in the previous section, the system timeline essentially consists
of a series of first-node failures each of which can result in data loss with
probability PDL. Here, we compute the mean time between two successive
first-node failures denoted by T .

Let E(t,∆t) represent the event that the system was renewed to its original
state in the interval (t −∆t, t). Also, let E(t,∆t, τ) represent the event that
the system was renewed to its fully-operational state in the interval (t−∆t, t)
and continues to operate without any failures in the interval (t, t+ τ).

system
timeline

✲XX X
tt−∆t t+ τ

We are interested in the survival function of the system, that is, the probability
pt(τ) defined as:

pt(τ) := lim
∆t→0

Pr{E(t,∆t, τ)|E(t,∆t)}

= lim
∆t→0

Pr{E(t,∆t, τ)}
Pr{E(t,∆t)} . (3.11)

In other words, we are interested in the probability that a system survives
without any node failures for a time period τ , given that the system was
restored to its fully-operational state at some time t. Using this probability,
the mean fully-operational period of the system at time t, Tt, can be computed
as

Tt =

∫ ∞

0

pt(τ)dτ. (3.12)

In other words, Tt is the mean time period between the first-node failure at
time t and the subsequent first-node failure. As the system becomes stationary,
pt(τ) converges to p(τ) and Tt converges to T . By computing p(τ), it can be
shown that (see Appendix A)

T = lim
t→∞

Tt =
1

nλ
. (3.13)

Note that the derivation of the mean fully-operational period holds for any
distribution of the failure times. In addition, it can be shown that the system
approaches stationarity exponentially fast if the density function, fλ, corre-
sponding to Fλ approaches zero exponentially fast [26].

3.2.4 MTTDL Estimate

As each first-node failure could result in data loss with probability PDL, the
expected number of first-node failures until data loss occurs is 1/PDL. By
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neglecting the effect of the relatively short transient period of the system, the
MTTDL is essentially the product of the expected time between two first-
node-failure events, T , and the expected number of first-node-failure events,
1/PDL, that is,

MTTDL ≈ T

PDL

=
1

nλPDL

. (3.14)

Although (3.14) lets one estimate the MTTDL by computing the probabil-
ity of data loss during rebuild, PDL, a theoretical analysis is difficult because
the paths, following a first-node failure, to either data loss or back to the
fully-operational state are complex as they pass through a combinatorially
large number of states. This makes the estimation of PDL a non-trival prob-
lem. This issue is addressed in Chapters 4 and 6, where a methodology to
estimate PDL by approximating it by the probability of the shortest path to
data loss is developed for replication-based systems and erasure coded systems,
respectively.

Remark 3.1. In obtaining the above expression, two approximations have been
made. Firstly, the time spent by the system in the rebuild mode is ignored. This
is motivated by the fact that nodes are generally reliable and that their mean
times to failure are much larger than mean times to rebuild. Therefore, this
approximation holds for systems with generally reliable nodes for which (2.10)
holds. As a second approximation, the effect of the transient period of the
system, where the expression (3.13) for the mean fully-operational period of
the system (or equivalently, the mean time between two successive first-node
failures) may not hold, is ignored. However, this is justified by the fact that
the system approaches stationarity exponentially fast if the failure time den-
sity function, fλ, approaches zero exponentially fast [26]. Real-world storage
device failures are modeled well by Weibull distributions with shape parameters
greater than one [3]. Such distributions have exponentially decaying densities
and therefore, the second approximation is reasonable for real-world storage
systems. It is also observed using simulations in this thesis that these approx-
imations are reasonable for systems with generally reliable nodes.

Remark 3.2. If the failure distribution Fλ is assumed to be exponential, the
node failures are memoryless and therefore, the expression (3.13) for the mean
fully-operational period, T , holds for all time t ≥ 0 and not just during the sta-
tionary period as t tends to infinity. This implies that the only approximation
made in obtaining the expression (3.14) for MTTDL is ignoring the time spent
by the system in rebuild mode, which is negligible compared to the time spent
in fully-operational mode for systems with generally reliable nodes satisfying
(2.10).
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3.2.5 Node vs. System Timelines

Note that there is a significant difference between the events on the node
timeline and events on the system timeline. Events on the timeline of node
i represent failures of node i (ignoring the rebuild time for that node). After
each event on the node timeline, the failed node i is replaced by a new node
whose failure time is independent of the previously failed node. Therefore, the
events on a node timeline form a renewal process with independent interarrival
times.

On the other hand, the events on the system timeline represent first-node
failures in the system, that is, the failures that cause the system to go from
the fully-operational mode to the rebuild mode (ignoring the time for the
subsequent, potentially complex, sequence of node rebuilds and failures that
eventually leads the system back to the fully-operational mode with probability
1 − PDL). After each event on the system timeline, only some of the nodes
of the system may have been replaced. Consequently, the time until the next
event also depends on the residual lifetimes of the remaining nodes. This
implies that the interarrival times in the system timeline are not independent
and so the events on this timeline do not form a renewal process. However, as
shown by (A.20) in Appendix A, the distributions pt(τ) (and hence the means)
of the interarrival times become identical as the system becomes stationary.
In other words, the interarrival times become identically distributed but are
not independent as the system becomes stationary.
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Replication-based
Systems 4
Replication is a widely-used form of data redundancy that is employed in
many of today’s data storage systems. Besides improving data reliability,
replication-based systems also improve the performance of the system because
of the availability of several replicas of the user data.

In this chapter, we analyze the data reliability of replication-based systems
in terms of its mean time to data loss (MTTDL) and show how different replica
placement schemes and system parameters affect the system MTTDL. To do
this, we make use of the relation (3.14) between MTTDL and the probability
of data loss during rebuild, PDL, which is a good approximation for real-world
systems with generally reliable storage nodes (see Section 3.2). The estima-
tion of PDL is a non-trivial problem as the system can go through a complex
sequence of node failures and rebuilds during the rebuild mode. Therefore, we
approximate PDL by the probability of the shortest path to data loss in rebuild
mode and show that this approximation holds good for generally reliable nodes
whose mean times to failure are much larger than their mean times to rebuild.

4.1 Estimation of the Probability of Data Loss

during Rebuild

This section shows how the complex sequence of failure and rebuild events
following a first-node failure, that is, a node failure that causes a transition of
the system from fully-operational mode to the rebuild mode, is handled to be
able to estimate the probability of data loss before all lost replicas are restored,
namely, PDL.

The general idea behind the estimation of PDL is as follows. We model the
reliability behavior of the system using exposure levels that range from zero to

27
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r. Exposure level zero corresponds to a system where all data have all replicas
intact, whereas exposure level r corresponds to a system where some data have
lost all their replicas. In other words, the system starts at exposure level zero
and eventually ends up in exposure level r, which corresponds to irrecoverable
data loss. Rebuild processes cause the system to go to lower exposure levels,
whereas node failures may, depending on the replica placement, cause the
system to go to higher exposure levels. The probability PDL is then equivalent
to the probability that, once the system enters exposure level one, the system
ends up in exposure level r before returning to exposure level zero. It is
extremely non-trivial to evaluate this probability as there are infinitely many
complex paths through which the system can traverse these exposure levels.
The problem is not so much complicated by the infinite number of paths as it
is by the fact that the probability of the next exposure level transition depends
on how the system got to the current exposure level. So we approximate this
probability, PDL, of all possible paths to data loss by the probability of the
direct path to data loss, namely, the path from exposure level one to two,
two to three, and so on until r. We show that such an approximation holds
for systems with generally reliable nodes (that is, nodes whose mean times to
failure are much larger than their mean times to rebuild) in the sense that
the relative error in the approximation tends to zero as the ratio of the mean
time to rebuild to the mean time to failure tends to zero. However, even the
computation of the probability of this direct path is quite involved. This is
because, the probability of transition from one exposure level to the next not
only depends on the current exposure level, but also on how the system arrived
there. So we consider all possible sample direct paths from exposure level zero
to r, compute their probabilities, and sum them up. This gives the probability
of direct path to data loss which is then used as a good approximation for
PDL.

4.1.1 Exposure Levels

Consider a replication-based storage system with replication factor r. To keep
the problem analytically tractable, we model the system as evolving from one
exposure level to another as nodes fail and rebuilds complete. At time t ≥ 0,
let Dl(t) be the amount of user data that have lost l replicas, with 0 ≤ l ≤ r.
The system is said to be in exposure level e at time t, 0 ≤ e ≤ r, if

e = max
Dl(t)>0

l. (4.1)

In other words, the system is in exposure level e if there exists some data
with r − e copies and no data with fewer than r − e copies in the system,
that is, De(t) > 0, and Dl(t) = 0 for all l > e. At t = 0, Dl(0) = 0 for all
l > 0 and D0(0) is the total amount of user data stored in the system, which
according to the parameters in Table 2.1, is equal to nc/r. Node failures and
rebuild processes cause the values of D1(t), · · · , Dr(t) and the exposure level
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of the system to change over time. Data loss occurs when some data have
lost all r replicas, that is, when Dr(t) > 0 for some time t. The smallest t for
which Dr(t) > 0 is the first time the system ends up in data loss and is simply
referred to as the time to data loss, TDL:

TDL = min
Dr(t)>0

t. (4.2)

The time to data loss is a random variable and our goal is to estimate its mean,
MTTDL.

4.1.2 Direct Path Approximation

A path to data loss following a first-node-failure event is a sequence of exposure
level transitions that begins in exposure level 1 and ends in exposure level r
(data loss) without going back to exposure level 0, that is, for some m ≥ r,
a sequence of m − 1 exposure level transitions e1 → e2 → · · · → em such
that e1 = 1, em = r, e2, · · · , em−1 ∈ {1, · · · , r − 1}, and |ei − ei−1| = 1,
∀ i = 2, · · · ,m. Note that this collection of paths excludes visits to exposure
level 0, and therefore, only consists of all paths to data loss before all lost
replicas are restored. To estimate PDL, we need to estimate the probability of
the union of all such paths to data loss following a first-node failure. As the
set of events that can occur between exposure level 1 and exposure level r is
complex, estimating PDL is a non-trivial problem.

To circumvent this problem, we approximate PDL by the probability of the
direct path to data loss, that is, the probability of the path 1 → 2 → · · · → r.
It is shown in Appendix B that the probability of the direct path approximates
well the probability of all paths, namely, PDL, for a system with generally
reliable nodes for which (2.10) holds. Thus, if we denote the probability of
direct path to data loss by PDL,direct, then

PDL ≈ PDL,direct. (4.3)

The proof of the above approximation relies only on the fact that the probabil-
ities of transitions to higher exposure levels are extremely small, which is the
case for systems with generally reliable nodes. The proof also does not make
any assumptions on the failure and rebuild time distributions. Additionally,
it is seen from the analysis in Appendix B that the approximation is quite
good in the sense that the relative error of approximation tends to zero as the
ratio, λ/µ, of mean time to rebuild to the mean time to failure tends to zero.
In real-world storage systems, this ratio is observed to be generally small and
therefore this is a reasonable approximation. The approximation is also seen
to be quite good over a wide range of parameters using simulations which do
not make this approximation.
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4.1.3 Probability of the Direct Path to Data Loss

Consider the direct path to data loss, that is, the path 1 → 2 → · · · → r
through the exposure levels. At each exposure level, the intelligent rebuild
process attempts to rebuild the most-exposed data, that is, the data with
the least number of replicas left (see Section 2.6). Let the rebuild times of
the most-exposed data at each exposure level in this path be denoted by Re,
e = 1, · · · , r − 1. If no additional node failures occur during a rebuild in
exposure level e that causes the system to go to exposure level e+1, then after
a time period of Re, the system will return to exposure level e− 1. Therefore,
determining the rebuild times at each exposure level is a key step in estimating
the probability of the direct path to data loss.

The rebuild times at each exposure level are random variables that depend
on the amount of most-exposed data to be rebuilt at that exposure level and
the data placement scheme. The amount of most-exposed data to be rebuilt at
a given exposure level, e, depends on when a node failure occurred during the
rebuild in the previous exposure level, e− 1, that caused the system to come
to exposure level e. Let us illustrate this with a simple example: consider a
system with six storage nodes divided into two clusters of three nodes each.
Each node in a cluster stores a copy of the same data and there is no data with
replicas on nodes in two different clusters. In our model, this is a replication-
based system with replication factor three and clustered replica placement.
The system is at exposure level zero until one of the nodes fails, at which point,
the system enters exposure level one. The amount of data to be rebuilt is c
and it takes an average of 1/µ amount of time to make a copy of this data from
one of the surviving nodes of the cluster to a new replacement node. In other
words, the rebuild time R1 has mean 1/µ. As the nodes are generally reliable,
typically no additional node failures occur during this rebuild period and the
system returns to exposure level zero. However, with a small probability, an
additional node failure occurs. This node could either belong to the cluster
being rebuilt, in which case the system enters exposure level two as some of
the data lose a second replica, or the other cluster, in which case the system
stays in the same exposure level as no data have lost more than one copy.
To compute the probability of the direct path to data loss, we are interested
in the probability of a node failure that causes the system to enter exposure
level two. Suppose that this second node failure occurs when a fraction α of
the data corresponding to the node that failed first is not yet rebuilt. Since
the two failed nodes shared replicas of all their data, the amount of data that
loses a second replica when the second failure occurs is αc. This data is now
the most-exposed and it would now take an average of α/µ amount of time
to rebuild this most-exposed data. In other words, the rebuild time R2 has a
conditional mean α/µ. We will now explicitly describe how one can estimate
the rebuild times at each exposure level.

Let te, e = 2, · · · , r, be the times of transitions from exposure level e−1 to
e following a first-node failure, that is, a node failure that causes the system to
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enter rebuild mode from the fully-operational mode. Let ñe be the number of
nodes in exposure level e whose failure before the rebuild of most-exposed data
causes an exposure level transition to level e + 1. For example, in clustered
placement scheme, the failure of any of the surviving nodes of the cluster
being rebuilt causes some data to lose an additional replica thereby leading
the system to the next exposure level. Therefore, for clustered placement,
ñe = r− e, as there are exactly r− e surviving nodes in a cluster being rebuilt
when the system is in exposure level e. Now, let

Fe := min
i∈{1,··· ,ñe−1}

E
(i)
te−1

, e = 2, · · · , r, (4.4)

denote the time taken for a node failure to occur that can cause the system to
enter exposure level e. Note that E

(i)
te−1

, as defined in Section 3.2.1, denotes the
time period from te−1 until the next failure of node i. Therefore, Fe denotes
the time until the first failure among the ñe−1 nodes that causes the system to
enter exposure level e.

At exposure level e, let αe be the fraction of the rebuild time, Re, left when
a node failure occurs causing an exposure level transition, that is, let

αe :=
Re − Fe+1

Re

, e = 1, · · · , r − 2. (4.5)

In Appendix C, it is shown that αe is uniformly distributed between zero and
one, that is,

αe ∼ U(0, 1), e = 1, · · · , r − 2. (4.6)

Now, consider a direct path to data loss with Re = τe, e = 1, · · · , r − 1,
and αe = ae, e = 1, · · · , r − 2.1 Denote the vector (τ1, · · · , τr−1) by ~τ and
(a1, · · · , ar−2) by ~a for notational convenience. Then, the probability of this
direct path, denoted by PDL,direct(~τ ,~a), is given by

PDL,direct(~τ ,~a) = Pr{R1 = τ1, F2 < R1, α1 = a1, R2 = τ2, F3 < R2,

· · · , αr−2 = ar−2, Rr−1 = τr−1, Fr < Rr−1}. (4.7)
In the above expression, the events Fe < Re−1 represent the exposure level
transitions from e − 1 to e. Thus, the above expression gives the probability
that the system will take this particular direct path to data loss with Re = τe
and αe = ae. Expanding (4.7) by conditioning, we get

PDL,direct(~τ ,~a) = Pr{R1 = τ1} × Pr{F2 < R1|R1 = τ1}
× Pr{α1 = a1|R1 = τ1, F2 < R1}
× Pr{R2 = τ2|R1 = τ1, F2 < R1, α1 = a1}
× Pr{F3 < R2|R1 = τ1, F2 < R1, α1 = a1, R2 = τ2}
· · · × Pr{Fr < Rr−1|R1 = τ1, · · · , Rr−1 = τr−1}. (4.8)

1More strictly, we consider a direct path to data loss with τe < Re ≤ τe + δτe, e =
1, · · · , r−1, and ae < αe ≤ δae, e = 1, · · · , r−2, where δτe and δae are positive infinitesimal
quantities, but we leave this out for notational convenience.
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The first term in the above expansion is the probability Pr{R1 = τ1}. Denote
the mean of R1 by 1/µ1, that is,

1

µ1

:= E[R1]. (4.9)

The actual value of the mean will depend on the underlying data placement
and will be discussed further in the later sections. Based on the rebuild model
described in Section 2.6, it follows that R1 is distributed according to some
distribution Gµ1 that satisfies (2.11):

R1 ∼ Gµ1 . (4.10)

Therefore, the first term reduces to

Pr{R1 = τ1} = gµ1(τ1)δτ1, (4.11)

where δτ1 denotes an infinitesimal increment in τ1. The remaining terms in
the expression for PDL,direct(~τ ,~a) in (4.8) fall into three types:

Type A: Pr{Fe < Re−1|R1 = τ1, · · · , Re−1 = τe−1}, (4.12)

Type B: Pr{αe = ae|R1 = τ1, · · · , Re = τe, Fe+1 < Re}, (4.13)

Type C: Pr{Re = τe|R1 = τ1, · · · , Re−1 = τe−1, Fe < Re−1, αe−1 = ae−1}.
(4.14)

Expressions of type A denote the conditional probability of transition from
exposure level e−1 to e, given that the system has traversed through exposure
levels 1 to e− 1 with corresponding rebuild times being equal to τ1, · · · , τe−1,
and corresponding fractions of rebuild times still remaining when exposure
levels occurred being equal to a1, · · · , ae−1. Expressions of type B denote the
conditional probability that the fraction αe of the rebuild time, Re, still left
when an exposure level transition from e to e + 1 occurred is equal to ae,
given that the system has traversed through exposure levels 1 to e − 1 with
corresponding rebuild times being equal to τ1, · · · , τe−1, and corresponding
fractions of rebuild times still remaining when exposure levels occurred being
equal to a1, · · · , ae−1. Expressions of type C denote the conditional probability
that the rebuild time in exposure level e is equal to τe, given that the system
has traversed through exposure levels 1 to e − 1 with corresponding rebuild
times being equal to τ1, · · · , τe−1, and corresponding fractions of rebuild times
still remaining when exposure levels occurred being equal to a1, · · · , ae−1. Each
of these types of expressions can be further simplified as follows.

Expressions of Type A

Terms of type A are the conditional probabilities of transitions to higher ex-
posure levels. Given that the rebuild time Re−1 = τe−1, the next exposure
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transition event, Fe < Re−1, is independent of the other conditioning terms in
(4.12). Therefore, terms of the type (4.12) can be rewritten as

Pr{Fe < Re−1|R1 = τ1, · · · , Re−1 = τe−1} = Pr{Fe < Re−1|Re−1 = τe−1}
= Pr{Fe < τe−1}. (4.15)

Here (4.15) follows from the fact that the time to next node failure, Fe, and the
time to rebuild the most-exposed data, Re−1, are independent. Substituting
for Fe from (4.4), we have

Pr{Fe < τe−1} = Pr

{
min

i∈{1,··· ,ñe−1}
E

(i)
te−1

< τe−1

}
(4.16)

= 1− Pr

{
min

i∈{1,··· ,ñe−1}
E

(i)
te−1

≥ τe−1

}
(4.17)

= 1− Pr
{
E

(i)
te−1

≥ τe−1 ∀ i ∈ {1, · · · , ñe−1}
}

(4.18)

= 1−
(
Pr
{
E

(1)
te−1

≥ τe−1

})ñe−1

(4.19)

= 1−
(
1− Pr

{
E

(1)
te−1

< τe−1

})ñe−1

. (4.20)

Here, (4.19) follows from the fact that E
(i)
te−1

are independent and identically
distributed random variables. From the results in Appendix D, it follows that

Pr
{
E

(1)
te−1

< τe−1

}
= λτe−1 + o (λτe−1) . (4.21)

Substituting (4.21) in (4.20), we get

Pr{Fe < τe−1} = 1− (1− λτe−1 + o (λτe−1))
ñe−1 (4.22)

= ñe−1λτe−1 + o (λτe−1) (4.23)

≈ ñe−1λτe−1, (4.24)

where the approximation (4.24) holds good for systems with generally reliable
nodes satisfying (2.10) and (2.11). From (4.15) and (4.24), we observe that
the type A expressions of the form (4.12) can be reduced to

Pr{Fe < Re−1|R1 = τ1, · · · , Re−1 = τe−1} ≈ ñe−1λτe−1, (4.25)

for e = 2, · · · , r, where the approximation holds good for systems with gener-
ally reliable node satisfying (2.10) and (2.11).

Remark 4.1. Note that the expression (4.25) represents the conditional prob-
ability of transition from exposure level e− 1 to e. The node rebuild times τe−1

(which are typically of the order of a few hours) are much smaller compared
to the mean time to node failure 1/λ (which are typically of the order of a
few years) for generally reliable nodes. Therefore, the conditional probabilities
of transition to higher exposure levels are extremely small for systems with
generally reliable nodes.
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Expressions of Type B

Expressions of type B relate to the distribution of the fractions of most-exposed
data that have not yet been rebuilt when a transition to a higher exposure
level occurred. Given that Re = τe and Fe+1 < Re, αe is independent of the
other conditioning terms in (4.13). Therefore, terms of the type (4.13) can be
rewritten as

Pr{αe = ae|R1 = τ1, · · · , Re = τe, Fe+1 < Re}
= Pr{αe = ae|Re = τe, Fe+1 < Re}. (4.26)

Substituting for αe from (4.5) into (4.26), we get

Pr{αe = ae|Re = τe, Fe+1 < Re}

= Pr

{
Re − Fe+1

Re

= ae

∣∣∣∣Re = τe, Fe+1 < Re

}
(4.27)

=
Pr
{

Re−Fe+1

Re
= ae, Re = τe, Fe+1 < Re

}

Pr {Re = τe, Fe+1 < Re}
(4.28)

=
Pr {Fe+1 = τe(1− ae), Re = τe, Fe+1 < τe}

Pr {Re = τe, Fe+1 < τe}
(4.29)

=
Pr {Fe+1 = τe(1− ae), Fe+1 < τe}Pr{Re = τe}

Pr {Fe+1 < τe}Pr{Re = τe}
(4.30)

=
Pr {Fe+1 = τe(1− ae)}

Pr {Fe+1 < τe}
. (4.31)

Here, (4.30) follows from the fact that the time to next node failure, Fe, and the
time to rebuild the most-exposed data, Re−1, are independent. From (4.24),
we have

Pr {Fe+1 < τe} = ñ(e)λτe−1, (4.32)

and

Pr {Fe+1 = τe(1− ae)} = Pr{τe(1− (ae + δae) < Fe+1 ≤ τe(1− ae))}
= Pr{Fe+1 ≤ τe(1− ae)}

− Pr{Fe+1 ≤ τe(1− (ae + δae))} (4.33)

≈ ñ(e)λτe−1(1− ae)

− ñ(e)λτe−1(1− (ae + δae)) (4.34)

= ñ(e)λτe−1δae, (4.35)

where δae denotes an infinitesimal increment of ae. From (4.26), (4.31), (4.32),
and (4.35), we observe that type B terms of the form (4.13) can be reduced to

Pr{αe = ae|R1 = τ1, · · · , Re = τe, Fe+1 < Re} ≈ δae, (4.36)

for e = 1, · · · , r − 2, where the approximation holds good for systems with
generally reliable node satisfying (2.10) and (2.11).
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Expressions of Type C

Type C expressions of the form (4.14) give the conditional probabilities of the
rebuild times in each exposure level. Given that Re−1 = τe−1 and αe−1 =
ae−1, the rebuild time in exposure level e, Re, is independent of remaining
conditioning terms in (4.14). Therefore, (4.14) can be rewritten as

Pr{Re = τe|R1 = τ1, · · · , Re−1 = τe−1, Fe < Re−1, αe−1 = ae−1}
= Pr{Re = τe|Re−1 = τe−1, αe−1 = ae−1}. (4.37)

Denote the conditional means of Re by 1/µe, that is,

1

µe

:= E[Re|Re−1, αe−1], e = 2, · · · , r − 1. (4.38)

The actual values of 1/µe depends on the data placement and this will be
further discussed in later sections of this chapter. Now, the distribution of
Re given Re−1 and αe−1 could be modeled in several ways. We propose two
models, namely,

Model A: Re|Re−1, αe−1 ∼ Gµe
, (4.39)

Model B: Re|Re−1, αe−1 =
1

µe

. (4.40)

In model A, we assume that, following a node failure, the system has to recon-
figure its rebuild process entirely to rebuild the most-exposed data blocks in
the new exposure level. This model may be applicable for a clustered place-
ment scheme, where the node from which data was being rebuilt failed and
hence the system has to rebuild from another node in the cluster. In model
B, we assume that, following a node failure, the system has to do little or
no reconfiguration of the rebuild process to rebuild the most-exposed data in
the new exposure level. This is the case, for instance, in a clustered placement
scheme where the newly failed node is different from the node from which data
is being rebuilt. This is also the case in a declustered placement scheme, where
the rebuild was being done from all nodes, and therefore, in a large system,
the failure of one node does not significantly affect the rebuild process.

Therefore, type C expressions of the form (4.14) reduce, under models A
and B, to

Pr{Re = τe|R1 = τ1, · · · , Re−1 = τe−1, Fe < Re−1, αe−1 = ae−1}

=

{
gµe

(τe)δτe under model A,
δ(τe − 1/µe)δτe under model B,

(4.41)

for e = 2, · · · , r − 1. Here, gµe
(·) denotes the probability density function

corresponding to the distribution Gµe
, δ(· − 1/µe) denotes the Dirac delta

function with a spike at 1/µe, and δτe denotes an infinitesimal increment of τe.
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Probability of a Sample Direct Path

Substituting (4.11), (4.25), (4.36), and (4.41) in (4.8), the probability of a
sample direct path with Re = τe, e = 1, · · · , r−1, and αe = ae,e = 1, · · · , r−2,
reduces to

PDL,direct(~τ ,~a) ≈ gµ1(τ1)δτ1 ×
(

r∏

e=2

ñe−1λτe−1

)
×
(

r−1∏

e′=1

δae′

)

×
{∏r−2

e′′=2 gµe′′
(τe′′)δτe′′ (model A)∏r−2

e′′=2 δ(τe′′ − 1/µe′′)δτe′′ (model B)

= λr−1 × ñ1 · · · ñr−1 × τ1 · · · τr−1 × gµ1(τ1)

×δa1 · · · δar−2 × δτ1 · · · δτr−1

×
{
gµ2(τ2) · · · gµr−1(τr−1) (model A)

δ
(
τ2 − 1

µ2

)
· · · δ

(
τr−1 − 1

µr−1

)
(model B)

(4.42)

Probability of Data Loss during Rebuild

As mentioned in Section 4.1.2, the probability of direct path to data loss,
denoted by PDL,direct, is a good approximation for the probability of data loss
during rebuild, PDL:

PDL ≈ PDL,direct. (4.43)

Also, the probability of the direct path to data loss, PDL,direct, is the summation
of the probabilities, PDL,direct(~τ ,~a), of all possible sample direct paths. As the
infinitesimal increments in (4.42) tend to zero, the summation becomes an
integral. Therefore, the probability of all possible direct paths to data loss,
PDL,direct, and hence, PDl, becomes

PDL ≈ λr−1 × ñ1 · · · ñr−1

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

τ1 · · · τr−1gµ1(τ1) · · · gµr−1(τr−1)d~ad~τ

(model A) (4.44)

PDL ≈ λr−1 × ñ1 · · · ñr−1

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1gµ1(τ1)

× δ

(
τ2 −

1

µ2

)
· · · δ

(
τr−1 −

1

µr−1

)
d~ad~τ

)

(model B). (4.45)

Here, the integrals are from 0 to ∞ for τe, e = 1, · · · , r − 1, and from 0 to 1
for ae, e = 1, · · · , r − 2.
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Remark 4.2. The approximations in the expressions (4.44) and (4.45) for
PDL hold good for systems with generally reliable nodes that satisfy (2.10) and
(2.11). The approximation is good in the sense that the relative error tends
to zero as the ratio λ/µ of the mean time to node failure to the mean time
to node rebuild tends to zero. The validity of the approximation has also been
established for a wide rage of parameters using simulation.

Remark 4.3. The derivation of the expressions (4.44) and (4.45) for PDL is
quite general in the sense that it is applicable to all symmetric data placement
schemes and to both replication-based systems and erasure-coded systems. It is
also applicable to all node failure and rebuild distributions that satisfy (2.10)
and (2.11). As can be observed from the expressions (4.44) and (4.45), the
only unknowns in evaluating PDL are the means µe, e = 1, · · · , r − 1, and the
number of nodes whose failure can cause a transition to the next exposure level,
ñe, e = 1, · · · , r − 1. These quantities depend on the particular type of data
placement or redundancy scheme used.

Remark 4.4. Erasure coded systems with an (l,m)-MDS code can survive the
loss of upto m − l blocks of a codeword. The loss of m − l + 1 blocks of any
codeword results in irrecoverable data loss. Therefore, an erasure coded system
can be modeled by exposure levels just like replication-based systems by replcing
r by m − l + 1. The expressions (4.44) and (4.45) for PDL continue to hold
for erasure coded systems when r is replaced by m− l + 1.

Remark 4.5. It is clear from (4.44) and (4.45) that PDL is invariant to the
class of failure distributions satisfying (2.10) and (2.11) and only depends on
the mean time to failure, 1/λ. Furthermore, by the relation (3.14), the MTTDL
is also invariant to this class of failure distributions. As this class of distribu-
tions includes real-world empirical distributions, such as the Weibull distribu-
tion, as well as the theoretically amenable exponential distribution, the benefit
is two-fold. The fact that real-world failure distributions belongs to this class
implies that these results are directly relevant to practical storage systems. On
the other hand, the presence of the exponential distribution in this class means
that MTTDL results obtained in the literature assuming unrealistic exponential
distributions may be applicable to real-world storage systems as well.

4.2 Effect of Replica Placement on Reliability

In this section, we consider different replica placement schemes as discussed
in Section 2.4. We would like to estimate their reliability in terms of their
MTTDL using the relations (3.14), (4.44), and (4.45), and understand how
replica placement affects data reliability. To use the expressions (4.44) and
(4.45) for PDL, we need to compute the conditional means of rebuild times
in each exposure level, µe, e = 1, · · · , r − 1, and the number of nodes whose
failure can cause a transition to the next exposure level, ñe, e = 1, · · · , r − 1.
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The values of these quantities depend on the underlying replica placement and
the nature of the rebuild process used.

Notation: Here, we introduce a few new notations and repeat the notations
used in the previous section for the sake of clarity. Suppose that a first-node
failure occurs at time t1 causing the system to go from the fully-operational
mode to exposure level 1 in the rebuild mode. Let te, e = 2, · · · , r, denote the
times of transitions frome exposure level e−1 to e. Let the rebuild times of the
most-exposed data at each exposure level in this path be Re, e = 1, · · · , r− 1,
with conditional means 1/µe, e = 1, · · · , r − 1. Let ñe, e = 1, · · · , r − 1, be
the number of nodes whose failure during rebuild can cause a transition to
the next higher exposure level. Let De(t), e = 0, · · · , r, denote the amount of
user data that have lost e replicas at time t. Around the times of exposure
level transitions, te, let De(t

−
e ) and De(te) denote the amounts of user data

that have lost e replicas just before and just after time te, respectively. In
addition, let Se, e = 1, · · · , r− 1, denote the average speed (or rate) of rebuild
in exposure level e. Also, let the kth raw moment of the rebuild distribution
Gµ with mean 1/µ be denoted by Mk(Gµ), that is,

Mk(Gµ) :=

∫

t

tkdGµ(t), for k = 1, 2, · · · . (4.46)

By definition,

M1(Gµ) =
1

µ
. (4.47)

Note that, by Jensen’s inequality,

Mk
1 (Gµ) ≤ Mk(Gµ), for k = 1, 2, · · · , (4.48)

that is, the kth power of the mean of Gµ is lesser than or equal to the kth
raw moment of Gµ. Lastly, the superscripts ’clus.’ and ’declus.’ will be used
to refer to quantities specific to clustered and declustered placement schemes,
respectively.

4.2.1 Clustered Replica Placement

The goal of this section is to estimate the reliability of a clustered replica
placement scheme in terms of its MTTDL. To achieve this goal, we first
compute the conditional means of rebuild times in each exposure level, µclus.

e ,
e = 1, · · · , r− 1, and the number of nodes whose failure can cause a transition
to the next exposure level, ñclus.

e , e = 1, · · · , r − 1. Using these quantities
and expressions (4.44) and (4.45), we can compute the probability of data loss
during rebuild, P clus.

DL . The mean time to data loss, MTTDLclus., can then be
obtained by using the relation (3.14).
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Clustered Replica Placement: Exposure Level 1

Following a first-node failure at t1, the system enters exposure level 1 and the
rebuild process begins. The amount of data to be rebuilt at this exposure level
is equal to the capacity of the failed node, c, that is,

Dclus.
1 (t1) = c. (4.49)

As described in Section 2.6, the rebuild process in a clustered placement scheme
involves copying the data corresponding to the failed node from one of the
other surviving nodes of the cluster to a new spare node. This is done at an
average bandwidth of cµ, and therefore, the average rate (or speed) of rebuild
in exposure level 1 is

Sclus.
1 = cµ. (4.50)

The average time required for this rebuild, 1/µclus.
1 , is obtained by dividing the

amount of data to be rebuilt, given by (4.49), by the average speed of rebuild,
given by (4.50). Thus,

1

µclus.
1

= E[Rclus.
1 ] =

Dclus.
1 (t1)

Sclus.
1

=
1

µ
. (4.51)

According to our model, the rebuild time, Rclus.
1 , is distributed according to

some distribution Gµclus.
1

with mean 1/µclus.
1 that satisfies (2.11), that is,

Rclus.
1 ∼ Gµclus.

1
= Gµ. (4.52)

There are r − 1 remaining nodes in the cluster of the failed node. The failure
of any of these nodes during the rebuild period Rclus.

1 will cause the system
to enter exposure level 2, whereas the failure of nodes belonging to any other
cluster does not cause the system to enter exposure level 2. Therefore, the
number of nodes whose failure during rebuild can cause a transition to the
next exposure level is given by

ñclus.
1 = r − 1. (4.53)

When one of the ñclus.
1 nodes fail before rebuild, the system enters exposure

level 2.

Clustered Replica Placement: Exposure Level 2

The system enters exposure level 2 from exposure level 1 because one of the
ñclus.
1 nodes fails during the rebuild period Rclus.

1 . Consider an instance of the
rebuild period,

Rclus.
1 = τ1, (4.54)
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and an instance of the fraction of the rebuild period still left when the exposure
level transition from 1 to 2 occurred,

α1 = a1. (4.55)

The remaining time to complete rebuild at exposure level 1 when the system
entered exposure level 2 is the product of Rclus.

1 and α1, namely, a1τ1. As
the average speed of rebuild in exposure level 1 is Sclus.

1 , it follows that the
amount of the most-exposed data not rebuilt when the exposure level transition
occurred, Dclus.

1 (t−2 ), is given by

Dclus.
1 (t−2 ) = α1R

clus.
1 Sclus.

1 = a1τ1cµ, (4.56)

which is essentially the product of (4.50), (4.54), and (4.55). At the time of
transition from exposure level 1 to 2, t2, all this Dclus.

1 (t−2 ) amount of data
loses a second copy and is thus the most-exposed data in exposure level 2.
This is due to the nature of the clustered replica placement scheme in which
all nodes of a cluster share copies of the same data. Therefore, the amount of
most-exposed data in exposure level 2, Dclus.

2 (t2), is given by

Dclus.
2 (t2) = Dclus.

1 (t−2 ) = a1τ1cµ. (4.57)

The average speed of rebuild remains unaffected as the system just copies from
one of the surviving nodes of the cluster to a new replacement node at a rate
of cµ. Therefore,

Sclus.
2 = cµ. (4.58)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µclus.

2 , of the rebuild time in the
second exposure level, Rclus.

2 , is obtained by dividing (4.57) by (4.58), that is,

1

µclus.
2

= E[Rclus.
2 |Rclus.

1 = τ1, α1 = a1] =
Dclus.

2 (t2)

Sclus.
2

= a1τ1. (4.59)

There are now r − 2 remaining nodes in the cluster of the failed node. The
failure of any of these nodes during the rebuild time Rclus.

2 will cause the system
to enter exposure level 3. Therefore, the number of nodes whose failure during
rebuild can cause a transition to the next exposure level is given by

ñclus.
2 = r − 2. (4.60)

Clustered Replica Placement: Exposure Level e

The computation of the conditional mean 1/µclus.
e and the number of nodes

ñclus.
e for a general exposure level e = 2, · · · , r−1, is similar to the computation

of these quantities for exposure level 2 as described above. Firstly, we note that
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the average speed of rebuild is unchanged in each exposure level for clustered
placement, that is,

Sclus.
e = cµ, e = 1, · · · , r − 1. (4.61)

This is due to the fact that the rebuild process always involves copying of
data from one of the surviving nodes of the cluster under rebuild to a new
replacement node.

Now, the system enters exposure level e from exposure level e− 1 because
one of the ñclus.

e−1 nodes fails during the rebuild period Rclus.
e−1 . Consider an

instance of the rebuild period,

Rclus.
e−1 = τe−1, (4.62)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from e− 1 to e occurred,

αe−1 = ae−1. (4.63)

The remaining time to complete rebuild at exposure level e−1 when the system
entered exposure level e is the product of Rclus.

e−1 and αe−1, namely, ae−1τe−1.
As the average speed of rebuild in exposure level e − 1 is Sclus.

e−1 , it follows
that the amount of the most-exposed data not rebuilt when the exposure level
transition occurred, Dclus.

e−1 (t
−
e ), is given by

Dclus.
e−1 (t

−
e ) = αe−1R

clus.
e−1 S

clus.
e−1 = ae−1τe−1cµ, (4.64)

which is essentially the product of (4.61), (4.62), and (4.63). At the time of
transition from exposure level e− 1 to e, te, all this D

clus.
e−1 (t

−
e ) amount of data

loses its eth copy and is thus the most-exposed data in exposure level e. This
is due to the nature of the clustered replica placement scheme. Therefore, the
amount of most-exposed data in exposure level e, Dclus.

e (te), is given by

Dclus.
e (te) = Dclus.

e (t−e ) = ae−1τe−1cµ. (4.65)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µclus.

e , of the rebuild time in the
eth exposure level, Rclus.

e , is obtained by dividing (4.65) by (4.61), that is,

1

µclus.
e

= E[Rclus.
e |Rclus.

e−1 = τe−1, αe−1 = ae−1] =
Dclus.

e (te)

Sclus.
e

= ae−1τe−1. (4.66)

There are now r− e remaining nodes in the cluster under rebuild. The failure
of any of these nodes during the rebuild time Rclus.

e will cause the system to
enter exposure level e+1. Therefore, the number of nodes whose failure during
rebuild can cause a transition to the next exposure level is given by

ñclus.
e = r − e. (4.67)
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Clustered Replica Placement: MTTDL under Model A

Recall that, under model A, following each exposure level transition, the sys-
tem is assumed to reconfigure its rebuild process entirely to rebuild the most-
exposed data blocks in the new exposure level. This model may be applicable
for a clustered placement scheme, where the node from which data was being
rebuilt failed and hence the system has to rebuild from another node in the
cluster. This implies that the rebuild time in the new exposure level is a ran-
dom variable, and only its mean depends on the rebuild time and the fraction
of most-exposed data not rebuilt in the previous exposure level. Given this
mean, the rebuild time in the new exposure level is independent of the re-
build time in the previous exposure level. Having computed the key quantities
1/µclus.

e and ñclus.
e for e = 1, · · · , r − 1, we are now ready to compute P clus.

DL

using the expression (4.44) for model A, and then MTTDLclus. using (3.14).

By substituting the values of 1/µclus.
e and ñclus.

e from (4.51), (4.66), and
(4.67) into (4.44), we obtain

P clus.
DL ≈ λr−1 × (r − 1)!

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

τ1 · · · τr−1gµ(τ1) · · · g 1
ar−2τr−2

(τr−1)d~ad~τ

(model A) (4.68)

As in (4.44) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2.

Replication factors r ≤ 3: The expression (4.68) for P clus.
DL under model

A cannot, in general, be further simplified without considering a particular
family of rebuild distributions Gµ. However, it is worth noting that, for r ≤ 3,
a closed form expression for P clus.

DL , and hence MTTDLclus., can be obtained
under model A. This is illustrated by deriving the closed form expression for
r = 3 by substituting r = 3 in (4.68) and simplifying as follows.

P clus.
DL ≈ λ2 × 2!×

∫ ∞

τ1=0

∫ ∞

τ2=0

∫ 1

a1=0

τ1τ2gµ(τ1)g 1
a1τ1

(τ2)da1dτ2dτ1

= 2λ2

∫ ∞

τ1=0

τ1gµ(τ1)

∫ 1

a1=0

∫ ∞

τ2=0

τ2g 1
a1τ1

(τ2)dτ2da1dτ1

for r = 3 (model A). (4.69)

Noting that

∫ ∞

τ2=0

τ2g 1
a1τ1

(τ2)dτ2 = a1τ1, (4.70)
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we get

P clus.
DL ≈ 2λ2

∫ ∞

τ1=0

τ 21 gµ(τ1)

∫ 1

a1=0

a1da1dτ1 (4.71)

= λ2

∫ ∞

τ1=0

τ 21 gµ(τ1)dτ1 (4.72)

= λ2M2(Gµ) for r = 3 (model A), (4.73)

where M2(Gµ), as defined in (4.46), denotes the second raw moment of the
rebuild distribution Gµ. The expression for MTTDLclus. then follows from
(3.14):

MTTDLclus. ≈ 1

nλP clus.
DL

≈ 1

nλ3M2(Gµ)
=

µ2

nλ3

M2
1 (Gµ)

M2(Gµ)

for r = 3 (model A). (4.74)

Here, the last step is obtained by multipliying and dividing by square of
the mean of the rebuild time distribution Gµ, M

2
1 (Gµ), which is also equal

to 1/µ2. This is done to show the effect of the rebuild distribution on the
MTTDL. For deterministic rebuild times, the second raw moment, M2(Gµ),
is equal to the square of the first raw moment, M2

1 (Gµ), and therefore, the
term M2

1 (Gµ)/M2(Gµ) evaluates to one. However, if the rebuild times are ran-
dom, the second raw moment is always greater than the square of the first
raw moment by Jensen’s inequality, and therefore, the term M2

1 (Gµ)/M2(Gµ)
is smaller than one. The closed form expression for r = 2 can be derived
similarly and is given by

MTTDLclus. ≈ µ

nλ2
for r = 2 (model A). (4.75)

Replication factors r > 3: For replication factors r > 3, the evaluation of
P clus.
Dl under model A involves computing the expectations of functions involv-

ing higher raw moments of Gµ, which cannot be done without considering a
particular family of rebuild distributions. As an example, if Gµ is exponential,
the expression for MTTDL under model A can be shown to be the following:

MTTDLclus. ≈ µr−1

nλr

1

(r − 1)!

r−3∏

e=1

1

(r − e− 1)e
, when Gµ is exponential

(model A). (4.76)

Clustered Replica Placement: MTTDL under Model B

In contrast to model A, we assume in model B that, following an exposure
level transition, the system has to do little or no reconfiguration of the rebuild
process to rebuild the most-exposed data in the new exposure level. This is the
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case, for instance, in a clustered placement scheme where the newly failed node
is different from the node from which data is being rebuilt. This is also the
case in a declustered placement scheme, where the rebuild was being done from
all nodes, and therefore, the failure of one node does not signficantly affect the
rebuild process. This impliles that the rebuild time in the new exposure level
is completely determined by the rebuild time and the fraction of most-exposed
data not rebuilt in the previous exposure level.

By substituting the values of 1/µclus.
e and ñclus.

e from (4.51), (4.66), and
(4.67) into (4.45), we obtain

P clus.
DL ≈ λr−1 × (r − 1)!

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr−1 − ar−2τr−2) d~ad~τ

)

(model B). (4.77)

As in (4.45) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2. In contrast to model A, closed form expressions
in terms of the raw moments of the rebuild distribution Gµ can be obtained
for model B as follows. By changing the order of integrals in (4.77), we obtain

P clus.
DL ≈ λr−1 × (r − 1)!

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−1

(
τ1 · · · τr−1gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr−1 − ar−2τr−2) dτr−1 · · · dτ1d~a
)

= λr−1 × (r − 1)!

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−2

(
τ1 · · · τ 2r−2ar−2gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr−2 − ar−3τr−3) dτr−2 · · · dτ1d~a
)

(4.78)



www.manaraa.com

4.2. Effect of Replica Placement on Reliability 45

= λr−1 × (r − 1)!

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−3

(
τ1 · · · τ 3r−3a

2
r−3ar−2gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr−3 − ar−4τr−4) dτr−3 · · · dτ1d~a
)

(4.79)

...

= λr−1 × (r − 1)!×
∫

a1

· · ·
∫

ar−2

∫

τ1

τ r−1
1 ar−2

1 · · · a2r−3ar−2gµ(τ1)dτ1d~a

(model B). (4.80)

Here, steps (4.78)–(4.80) follow by successively integrating over τr−1, · · · , τ2, by
using the Dirac delta function’s property. Changing the order of the integrals
and integrating out a1, · · · , ar−2, we get

P clus.
DL ≈ λr−1 × (r − 1)!×

∫

τ1

τ r−1
1 gµ(τ1)

1

(r − 1)!
dτ1 (4.81)

= λr−1Mr−1(Gµ) (model B) (4.82)

where Mr−1(Gµ), as defined in (4.46), denotes the (r − 1)th raw moment of
the rebuild distribution Gµ. The expression for MTTDLclus. then follows from
(3.14):

MTTDLclus. ≈ 1

nλP clus.
DL

≈ 1

nλrMr−1(Gµ)
=

µr−1

nλr

M r−1
1 (Gµ)

Mr−1(Gµ)
(model B).

(4.83)

Here, the last step is obtained by multipliying and dividing by (r−1)th power
of the mean of the rebuild time distribution Gµ, M r−1

1 (Gµ), which is also
equal to 1/µr−1. This is done to show the effect of the rebuild distribution
on the MTTDL. For deterministic rebuild times, the (r − 1)th raw moment,
Mr−1(Gµ), is equal to the (r− 1)th power of the first raw moment, M r−1

1 (Gµ),
and therefore, the term M r−1

1 (Gµ)/Mr−1(Gµ) evaluates to one. For random
rebuild times, by the Jensen’s inequality, the (r−1)th raw moment, Mr−1(Gµ),
is always greater than the (r−1)th power of the first raw moment, M r−1

1 (Gµ),
and therefore, the term M r−1

1 (Gµ)/Mr−1(Gµ) evaluates to less than one.
As an example, if Gµ is exponential, the expression for MTTDLclus. reduces

to the following:

MTTDLclus. ≈ µr−1

nλr

1

(r − 1)!
when Gµ is exponential (model B). (4.84)

Remark 4.6. The expressions (4.74), (4.76), (4.83), and (4.84) for the mean
time to data loss of a storage system with clustered replica placement scheme
under both models A and B are seen to be invariant within the class of node
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failure distributions that satisfy (2.10) and (2.11). In particular, the MTTDL
only depends on the mean of the times to node failure, 1/λ. As the conditions
(2.10) and (2.11) hold true for real-world storage nodes as well, these MTTDL
results are of practical significance.

Remark 4.7. The expressions (4.74), (4.76), (4.83), and (4.84) for the mean
time to data loss of a storage system with clustered replica placement scheme
also reveal that the MTTDL is sensitive to the rebuild distribution Gµ and
to the choice of the model A or B. It is observed that deterministic rebuild
times have better MTTDL values compared to random rebuild times because the
terms of the form M r−1

1 (Gµ)/Mr−1(Gµ) are upper-bounded by one due to the
Jensen’s inequality, and the bound is achieved for deterministic rebuild times.
The explanation for this fact is that, when rebuild times are random, given that
a failure occurred during rebuild, it is more probable that the rebuild time was
larger. This effect is known as the waiting time paradox. The waiting time
paradox is also the reason for the MTTDL values to be higher under model B
than under model A (compare (4.76) and (4.84)) because model A introduces
additional randomness to the rebuild times at each exposure level whereas model
B does not.

Remark 4.8. For a given rebuild distribution Gµ and for replication factors
r ≤ 3, we note that the expressions for MTTDL under model A, given by (4.74)
and (4.75), and the expressions for MTTDL under model B, given by (4.83),
are not different. However, for replication factors r > 3, as illustrated by the
choice of an exponential rebuild distribution in (4.76) and (4.84), the MTTDL
under model A may differ from the MTTDL under model B. Furthermore, if
the rebuild times are deterministic, we note that the models A and B do not
differ by definition (see (4.39) and (4.40)). Therefore, for deterministic rebuild
times, the MTTDL values under both models are the same.

Remark 4.9. The MTTDL of a replication-based system with clustered place-
ment scheme is observed to scale down inversely proportional to the number
of nodes n. It is directly proportional to the rth power of the mean time to
node failure 1/λ, and inversely proportional to the (r−1)th power of the mean
time to node rebuild 1/µ. As will be seen later, this is a general trend in the
MTTDL behavior of data storage systems. This trend also holds for erasure
coded systems with an (l,m)-MDS code, with r replaced by m− l+ 1. Besides
changing the parameters λ, µ, and r, another way to influence the MTTDL of
a storage system is by changing the replica placement. By changing the replica
placement scheme, one can influence the scaling of MTTDL with respect to the
number of nodes n, resulting in a tremendous improvement in reliability for
large storage systems.
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4.2.2 Declustered Replica Placement

In most storage systems, the mean times to node failure and mean times to
node rebuilds are given constants because they depend on the particular type
of nodes used. For a replication-based system with a given type of node, one
way to improve reliability is to increase the replication factor r. However,
this comes at the cost of storage efficiency. For a given replication factor, as
mentioned in Remark 4.9, it may be possible to simply change the underlying
replica placement and the way in which rebuild is done to gain significant im-
provements in reliability for large storage systems. Declustered replica place-
ment is one of those ways in which the system reliability can be improved over
clustered placement for large storage systems. The goal of this section is to
estimate the reliability of the declustered replica placement scheme in terms
of the mean time to data loss, and understand how this replica placement
scheme can achieve high reliability in large systems. To achieve this goal, we
first compute the conditional means of rebuild times in each exposure level,
µdeclus.
e , e = 1, · · · , r − 1, and the number of nodes whose failure can cause a

transition to the next exposure level, ñdeclus.
e , e = 1, · · · , r − 1. Using these

quantities and expressions (4.44) and (4.45), we can compute the probability
of data loss during rebuild, P declus.

DL . The mean time to data loss, MTTDLdeclus.,
can then be obtained by using the relation (3.14).

Declustered Replica Placement: Exposure Level 1

Following a first-node failure at t1, the system enters exposure level 1 and the
rebuild process begins. The amount of data to be rebuilt at this exposure level
is equal to the capacity of the failed node, c, that is,

Ddeclus.
1 (t1) = c. (4.85)

By the nature of the declustered placement, the r−1 remaining replicas of the
data corresponding to the failed node are spread equally across all the surviving
n− 1 nodes of the system. As described in Section 2.6, the distributed rebuild
process in a declustered placement scheme involves reading the replicas of the
data to be rebuilt from all the surviving nodes of the system and copying to
the spare space of these nodes in such a way that no data is copied to a node
in which its replica is already present. As each of the n − 1 node has an
average read-write rebuild bandwidth of cµ, and as equal amounts of data is
read and written to each node during the distributed rebuild process owing to
its symmetry, the average rate of rebuild in exposure level 1 is

Sdeclus.
1 = (n− 1)

cµ

2
. (4.86)

The average time required for this rebuild, 1/µdeclus.
1 , is obtained by dividing

the amount of data to be rebuilt, given by (4.85), by the average speed of



www.manaraa.com

48 Replication-based Systems

rebuild, given by (4.86). Thus,

1

µdeclus.
1

= E[Rdeclus.
1 ] =

Ddeclus.
1 (t1)

Sdeclus.
1

=
1

(n− 1)µ/2
. (4.87)

According to our model, the rebuild time, R1, is distributed according to Gµ1 ,
that is,

Rdeclus.
1 ∼ Gµdeclus.

1
= G(n−1)µ/2. (4.88)

There are n−1 surviving nodes in the system, each containting equal amounts
of the replicas corresponding to the most-exposed data. So, the failure of any
of these nodes during the rebuild period Rdeclus.

1 will cause the system to enter
exposure level 2. Therefore, the number of nodes whose failure during rebuild
can cause a transition to the next exposure level is given by

ñdeclus.
1 = n− 1. (4.89)

When one of the ñdeclus.
1 nodes fail before rebuild, the system enters exposure

level 2.

Declustered Replica Placement: Exposure Level 2

The system enters exposure level 2 from exposure level 1 because one of the
ñdeclus.
1 nodes fails during the rebuild period Rdeclus.

1 . Consider an instance of
the rebuild period,

Rdeclus.
1 = τ1, (4.90)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from 1 to 2 occurred,

α1 = a1. (4.91)

The remaining time to complete rebuild at exposure level 1 when the system
entered exposure level 2 is the product of Rdeclus.

1 and α1, namely, a1τ1. As the
average speed of rebuild in exposure is Sdeclus.

1 , it follows that the amount of
the most-exposed data not rebuilt when the exposure level transition occurred,
D1(t

−
2 ), is given by

Ddeclus.
1 (t−2 ) = α1R

declus.
1 Sdeclus.

1 = a1τ1(n− 1)
cµ

2
, (4.92)

which is essentially the product of (4.86), (4.90), and (4.91). In contrast to
clustered placement, at the time of transition from exposure level 1 to 2, t2,
not all of this Ddeclus.

1 (t−2 ) amount of data loses a second copy. As described
in Section 2.4, due to the nature of the declustered replica placement scheme,
the two failed nodes share copies of only a fraction r−1

n−1
of this data. So

during the exposure level transition, only r−1
n−1

Ddeclus.
1 (t−2 ) amount of data loses
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a second copy. Therefore, the amount of most-exposed data in exposure level
2, Ddeclus.

2 (t2), is given by

Ddeclus.
2 (t2) =

r − 1

n− 1
Ddeclus.

1 (t−2 ) = (r − 1)a1τ1
cµ

2
. (4.93)

By the nature of the declustered placement, the r − 2 remaining replicas of
the most-exposed data are spread equally across all the surviving n− 2 nodes
of the system. The distributed rebuild process involves reading these replicas
from all the surviving nodes of the system and copying to the spare space of
these nodes in such a way that no data is copied to a node in which its replica
is already present. As each of the n−2 node has an average read-write rebuild
bandwidth of cµ, and as equal amounts of data is read and written to each
node during the distributed rebuild process owing to its symmetry, the average
rate of rebuild in exposure level 2 is given by

Sdeclus.
2 = (n− 2)

cµ

2
. (4.94)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µdeclus.

2 , of the rebuild time in
the second exposure level, Rdeclus.

2 , is obtained by dividing (4.93) by (4.94),
that is,

1

µdeclus.
2

= E[Rdeclus.
2 |Rdeclus.

1 = τ1, α1 = a1] =
Ddeclus.

2 (t2)

Sdeclus.
2

=
r − 1

n− 2
a1τ1. (4.95)

There are now n − 2 surviving nodes in the system, each containing equal
amounts of the replicas corresponding to the most-exposed data. So, the
failure of any of these nodes during the rebuild period Rdeclus.

2 will cause the
system to enter exposure level 3. Therefore, the number of nodes whose failure
during rebuild can cause a transition to the next exposure level is given by

ñdeclus.
2 = n− 2. (4.96)

Declustered Replica Placement: Exposure Level e

The computation of the conditional mean 1/µdeclus.
e and the number of nodes

ñdeclus.
e for a general exposure level e = 2, · · · , r−1 is similar to the computation

of these quantities for exposure level 2 as described above. Firstly, we note
that the distributed rebuild process in each exposure level e always involves
reading replicas of the data to be rebuilt from all n− e surviving nodes of the
system and copying it to the spare spaces of these nodes in such a way that
no data is copied to a node in which its replica is already present. Due to the
nature of the declustered placement, this involves reading and writing equal
amounts of data in each node. As the average read-write rebuild bandwidth
at each node is cµ, which is equally split between the reads and the writes, the
average speed of rebuild in each exposure level for declustered placement is

Sdeclus.
e = (n− e)

cµ

2
, e = 1, · · · , r − 1. (4.97)
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Now, the system enters exposure level e from exposure level e− 1 because
one of the ñdeclus.

e−1 nodes fails during the rebuild period Rdeclus.
e−1 . Consider an

instance of the rebuild period,

Rdeclus.
e−1 = τe−1, (4.98)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from e− 1 to e occurred,

αe−1 = ae−1. (4.99)

The remaining time to complete rebuild at exposure level e − 1 when the
system entered exposure level e is the product of Rdeclus.

e−1 and αe−1, namely,
ae−1τe−1. As the average speed of rebuild in exposure is Sdeclus.

e−1 , it follows
that the amount of the most-exposed data not rebuilt when the exposure level
transition occurred, Ddeclus.

e−1 (t−e ), is given by

Ddeclus.
e−1 (t−e ) = αe−1R

declus.
e−1 Sdeclus.

e−1 = ae−1τe−1(n− e+ 1)
cµ

2
, (4.100)

which is essentially the product of (4.97), (4.98), and (4.99). At the time
of transition from exposure level e − 1 to e, te−1, not all of this Ddeclus.

1 (t−2 )
amount of data loses its eth copy. Due to the nature of the declustered replica
placement scheme, the newly failed nodes shares copies of only a fraction r−e+1

n−e+1

of this data. So during the exposure level transition, only r−e+1
n−e+1

Ddeclus.
1 (t−2 )

amount of data loses its eth copy. Therefore, the amount of most-exposed
data in exposure level e, Ddeclus.

e (te), is given by

Ddeclus.
e (te) =

r − e+ 1

n− e+ 1
Ddeclus.

e (t−e ) = (r − e+ 1)ae−1τe−1
cµ

2
. (4.101)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µdeclus.

e , of the rebuild time in
the eth exposure level, Rdeclus.

e , is obtained by dividing (4.101) by (4.97), that
is,

1

µdeclus.
e

= E[Rdeclus.
e |Rdeclus.

e−1 = τe−1, αe−1 = ae−1] (4.102)

=
Ddeclus.

e (te)

Sdeclus.
e

(4.103)

=
r − e+ 1

n− e
ae−1τe−1. (4.104)

There are now n − e surviving nodes in the system, each containting equal
amounts of the replicas corresponding to the most-exposed data. So, the
failure of any of these nodes during the rebuild period Rdeclus.

e will cause the
system to enter exposure level e + 1. Therefore, the number of nodes whose
failure during rebuild can cause a transition to the next exposure level is given
by

ñdeclus.
e = n− e. (4.105)
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Declustered Replica Placement: MTTDL under Model A

Recall that, under model A, following each exposure level transition, the sys-
tem is assumed to reconfigure its rebuild process entirely to rebuild the most-
exposed data blocks in the new exposure level. This model may be applicable
for a clustered placement scheme, where the node from which data was being
rebuilt failed and hence the system has to rebuild from another node in the
cluster. However, in a declustered placement scheme, where the distributed
rebuild was being done from all nodes, the failure of one node may not signfi-
cantly affect the rebuild process. Therefore, model B may be better suited for
the declustered placement scheme than model A. Nonetheless, we will derive
the expressions for declustered placement scheme under model A for the sake
of completeness.

Having computed the key quantities 1/µdeclus.
e and ñdeclus.

e for e = 1, · · · , r−
1, we are now ready to compute P declus.

DL using the expression (4.44) for model
A, and then MTTDLdeclus. using (3.14). By substituting the values of 1/µdeclus.

e

and ñdeclus.
e from (4.87), (4.104), and (4.105) into (4.44), we obtain

P declus.
DL ≈ λr−1 × (n− 1) · · · (n− r + 1)×

∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1

× g (n−1)µ
2

(τ1) · · · g n−r+1
2ar−2τr−2

(τr−1)d~ad~τ

)

(model A)(4.106)

As in (4.44) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2.

Replication factors r ≤ 3: Similar to the case of clustered placement,
the expression (4.106) for P declus.

DL under model A cannot, in general, be fur-
ther simplified without considering a particular family of rebuild distributions
Gµ. However, for r ≤ 3, a closed form expression for P declus.

DL , and hence
MTTDLdeclus., can be obtained under model A. This is illustrated by deriving
the closed form expression for r = 3 by substituting r = 3 in (4.106) and
simplifying as follows.

P declus.
DL ≈ λ2 × (n− 1)(n− 2)×

∫ ∞

τ1=0

∫ ∞

τ2=0

∫ 1

a1=0

(
τ1τ2

× g (n−1)µ
2

(τ1)g n−2
2a1τ1

(τ2)da1dτ2dτ1

)
(4.107)
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= (n− 1)(n− 2)λ2

(∫ ∞

τ1=0

τ1g (n−1)µ
2

(τ1)

∫ 1

a1=0

∫ ∞

τ2=0

(
τ2

× g n−2
2a1τ1

(τ2)
)
dτ2da1dτ1

)

for r = 3 (model A). (4.108)

Noting that
∫ ∞

τ2=0

τ2g n−2
2a1τ1

(τ2)dτ2 =
2a1τ1
n− 2

, (4.109)

we get

P declus.
DL ≈ 2(n− 1)λ2

∫ ∞

τ1=0

τ 21 g (n−1)µ
2

(τ1)

∫ 1

a1=0

a1da1dτ1 (4.110)

= (n− 1)λ2

∫ ∞

τ1=0

τ 21 g (n−1)µ
2

(τ1)dτ1 (4.111)

= (n− 1)λ2M2(G(n−1)µ/2) for r = 3 (model A), (4.112)

where M2(G(n−1)µ/2), as defined in (4.46), denotes the second raw moment
of the rebuild distribution G(n−1)µ/2. The expression for MTTDLdeclus. then
follows from (3.14):

MTTDLdeclus. ≈ 1

nλP declus.
DL

(4.113)

≈ 1

n(n− 1)λ3M2(G(n−1)µ/2)
for r = 3 (model A). (4.114)

Multipliying and dividing (4.114) by square of the mean of the rebuild time
distribution G(n−1)µ/2,

M2
1 (G(n−1)µ/2) =

1

((n− 1)µ/2)2
(4.115)

we get

MTTDLdeclus. ≈ (n− 1)µ2

4nλ3

M2
1 (G(n−1)µ/2)

M2(G(n−1)µ/2)
for r = 3 (model A). (4.116)

For deterministic rebuild times, the second raw moment, M2(G(n−1)µ/2), is
equal to the square of the first raw moment, M2

1 (G(n−1)µ/2), and therefore,
the term M2

1 (G(n−1)µ/2)/M2(G(n−1)µ/2) evaluates to one. However, if the re-
build times are random, the second raw moment is always greater than the
square of the first raw moment by Jensen’s inequality, and therefore, the term
M2

1 (G(n−1)µ/2)/M2(G(n−1)µ/2) is smaller than one. The closed form expression
for r = 2 can be derived similarly and is given by

MTTDLdeclus. ≈ µ

2nλ2
for r = 2 (model A). (4.117)



www.manaraa.com

4.2. Effect of Replica Placement on Reliability 53

Replication factors r > 3: For replication factors r > 3, the evaluation
of P declus.

Dl under model A involves computing the expectations of functions
involving higher raw moments of Gµ, which cannot be done without consid-
ering a particular family of rebuild distributions. However, given a particular
family of rebuild distributions, the derivation of MTTDL involves successively
evaluating the integrals in (4.106) to compute P declus.

DL , and then using (3.14)
to obtain MTTDLdeclus..

Declustered Replica Placement: MTTDL under Model B

In contrast to model A, we assume in model B that, following an exposure
level transition, the system has to do little or no reconfiguration of the rebuild
process to rebuild the most-exposed data in the new exposure level. This is
the case in a declustered placement scheme, where the rebuild was being done
from all nodes, and therefore, in a large system, the failure of one node does
not signficantly affect the rebuild process. This impliles that the rebuild time
in the new exposure level is completely determined by the rebuild time and
the fraction of most-exposed data not rebuilt in the previous exposure level.

By substituting the values of 1/µdeclus.
e and ñdeclus.

e from (4.87), (4.104), and
(4.105) into (4.45), we obtain

P declus.
DL ≈ λr−1 × (n− 1) · · · (n− r + 1)

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1g (n−1)µ

2

(τ1)

× δ

(
τ2 −

r − 1

n− 2
a1τ1

)
· · · δ

(
τr−1 −

2

n− r + 1
ar−2τr−2

)
d~ad~τ

)

(model B). (4.118)

As in (4.45) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2. In contrast to model A, closed form expressions
in terms of the raw moments of the rebuild distribution can be obtained for
model B as follows. By changing the order of integrals in (4.118), we obtain

P declus.
DL ≈ λr−1 × (n− 1) · · · (n− r + 1)

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−1

(
τ1 · · · τr−1g (n−1)µ

2

(τ1)

× δ

(
τ2 −

r − 1

n− 2
a1τ1

)
· · · δ

(
τr−1 −

2

n− r + 1
ar−2τr−2

)

× dτr−1 · · · dτ1d~a
)

(4.119)
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= λr−1 × (n− 1) · · · (n− r + 1)× 2

n− r + 1

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−2

(
τ1 · · · τ 2r−2ar−2g (n−1)µ

2

(τ1)

× δ

(
τ2 −

r − 1

n− 2
a1τ1

)
· · · δ

(
τr−2 −

3

n− r + 2
ar−3τr−3

)

× dτr−2 · · · dτ1d~a
)

(4.120)

= λr−1 × (n− 1) · · · (n− r + 1)× 2

(n− r + 1)
× 32

(n− r + 2)2

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−3

(
τ1 · · · τ 3r−3a

2
r−3ar−2g (n−1)µ

2

(τ1)

× δ

(
τ2 −

r − 1

n− 2
a1τ1

)
· · · δ

(
τr−3 −

4

n− r + 3
ar−4τr−4

)

× dτr−3 · · · dτ1d~a
)

(4.121)

...

= λr−1 × (n− 1)r−1 ×
r−2∏

e=1

(
r − e

n− e

)r−e−1

×
∫

a1

· · ·
∫

ar−2

∫

τ1

τ r−1
1 ar−2

1 · · · a2r−3ar−2g (n−1)µ
2

(τ1)dτ1d~a

(model B). (4.122)

Here, steps (4.120)–(4.122) follow by successively integrating over τr−1, · · · , τ2,
using the Dirac delta function’s property, cancelling out terms of the form
(n− r+ e), e = 1, · · · , r− 2, and rewriting the terms outside the integral after
multiplying and dividing by (n − 1)r−1. Changing the order of the integrals
and integrating out a1, · · · , ar−2, we get

P declus.
DL ≈ λr−1(n− 1)r−1

r−2∏

e=1

(
r − e

n− e

)r−e−1 ∫

τ1

τ r−1
1 g (n−1)µ

2

(τ1)
1

(r − 1)!
dτ1

= λr−1Mr−1(G(n−1)µ/2)
(n− 1)r−1

(r − 1)!

r−2∏

e=1

(
r − e

n− e

)r−e−1

(model B), (4.123)

where Mr−1(G(n−1)µ/2), as defined in (4.46), denotes the (r−1)th raw moment
of the rebuild distribution G(n−1)µ/2. The expression for MTTDLdeclus. then
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follows from (3.14):

MTTDLdeclus. ≈ 1

nλP declus.
DL

(4.124)

≈ 1

nλrMr−1(G(n−1)µ/2)

(r − 1)!

(n− 1)r−1

r−2∏

e=1

(
n− e

r − e

)r−e−1

(model B). (4.125)

Multipliying and dividing (4.125) by the (r − 1)th power of the mean of the
rebuild time distribution G(n−1)µ/2,

M r−1
1 (G(n−1)µ/2) =

1

((n− 1)µ/2)r−1 (4.126)

we get

MTTDLdeclus. ≈ µr−1

nλr

M r−1
1 (G(n−1)µ/2)

Mr−1(G(n−1)µ/2)

(r − 1)!

2r−1

r−2∏

e=1

(
n− e

r − e

)r−e−1

(model B). (4.127)

For deterministic rebuild times, the (r − 1)th raw moment, Mr−1(G(n−1)µ/2),
is equal to the (r− 1)th power of the first raw moment, M r−1

1 (G(n−1)µ/2), and
therefore, the term M r−1

1 (G(n−1)µ/2)/Mr−1(G(n−1)µ/2) evaluates to one. For
random rebuild times, by the Jensen’s inequality, the (r − 1)th raw moment,
Mr−1(G(n−1)µ/2), is always greater than the (r − 1)th power of the first raw
moment, M r−1

1 (G(n−1)µ/2), and therefore, their ratio evaluates to less than one.
As an example, if G(n−1)µ/2 is exponential, the expression for MTTDLdeclus.

reduces to the following:

MTTDLdeclus. ≈ µr−1

nλr

1

2r−1

r−2∏

e=1

(
n− e

r − e

)r−e−1

when G(n−1)µ/2 is exponential (model B). (4.128)

Remark 4.10. The expressions (4.116), (4.117), (4.127), and (4.128) for the
mean time to data loss of a storage system with declustered replica placement
scheme under both models A and B are seen to be invariant within the class
of node failure distributions that satisfy (2.10) and (2.11). In particular, the
MTTDL only depends on the mean of the times to node failure, 1/λ. As the
conditions (2.10) and (2.11) hold true for real-world storage nodes as well,
these MTTDL results are of practical significance.

Remark 4.11. The expressions (4.116), (4.127), and (4.128) for the mean
time to data loss of a storage system with declustered replica placement scheme
also reveal that the MTTDL is sensitive to the rebuild distribution G(n−1)µ/2.
It is observed that deterministic rebuild times have higher MTTDL values
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compared to random rebuild times. This is because the terms of the form
M r−1

1 (G(n−1)µ/2)/Mr−1(G(n−1)µ/2) are upper-bounded by 1 due to the Jensen’s
inequality, and this bound is achieved for deterministic rebuild times. The ex-
planation for this fact is that, when rebuild times are random, given that a
failure occurred during rebuild, it is more probable that the rebuild time was
larger. This effect is known as the waiting time paradox. Larger rebuild times
imply that a larger amount of most-exposed data remains unrebuilt when the
system enters a higher exposure level, thereby reducing the reliability.

Remark 4.12. Comparing the MTTDL values of clustered placement in (4.83)
with those of declustered placement in (4.127), we observe that they are both
directly proportional to the rth power of the mean time to node failure 1/λ, and
inversely proportional to the (r − 1) power of the mean time to node rebuild
1/µ. This is a general trend in the MTTDL behavior of data storage systems.
This trend also holds for erasure coded systems with an (l,m)-MDS code, with r
replaced by m−l+1. However, in contrast to clustered placement, the MTTDL
of a replication-based system with declustered placement scheme is observed to
scale differently with the number of nodes, n, for different replication factors,
r. It can be seen from (4.127) that the MTTDL of declustered placement scales
roughly as the (r(r−3)/2)th power of n. For r = 2, the MTTDL of declustered
placement scales inversely proportional to n, just like in clustered placement.
For r = 3, the MTTDL of declustered placement stays roughtly constant with n.
For r > 3, the MTTDL of declustered placement increases with n. This shows
that, by changing the replica placement scheme, one can influence the scaling
of MTTDL with respect to the number of nodes n, resulting in a tremendous
improvement in reliability for large storage systems.

4.3 Clustered vs. Declustered Replica Placement

In this section, we compare and contrast the MTTDL of systems under clus-
tered and declustered replica placement schemes using the help of figures. Note
that models A and B, as described in Section 4.1.3, do not differ in the values
of MTTDL for r ≤ 3. Furthermore, the difference between models A and B
for r > 3 is typically only a constant factor that depends on the rebuild distri-
bution. Also, if the the rebuild times are deterministic, there is no difference
between models A and B and therefore they agree on the MTTDL values for
all replication factors. So, without loss of generality, we will only consider the
MTTDL values under model B for further discussions in this section.

4.3.1 Replication Factor 2

Plugging r = 2 in (4.83) and (4.127), we obtain the MTTDL of two-way repli-
cated systems for clustered and declustered placement schemes, respectively:

MTTDLclus. ≈ µ

nλ2
for r = 2. (4.129)
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Figure 4.1: MTTDL as a function of the number of nodes for replication factor
two.

MTTDLdeclus. ≈ µ

2nλ2
for r = 2. (4.130)

From (4.129) and (4.130), it is observed that the MTTDL of two-way repli-
cated systems under both placement schemes are directly proportional to the
square of the mean time to node failure, 1/λ, and inversely proportional to
the mean time to read all contents of a node during rebuild, 1/µ. In addition,
the MTTDL values are seen to be independent of the underlying rebuild dis-
tribution. Figure 4.1 illustrates the MTTDL behavior of two-way replicated
systems with respect to the number of nodes in the system.

4.3.2 Replication Factor 3

Plugging r = 3 in (4.83) and (4.127), we obtain the MTTDL values for three-
way replicated systems for clustered and declustered placement schemes, re-
spectively:

MTTDLclus. ≈ µ2

nλ3

M2
1 (Gµ)

M2(Gµ)
for r = 3. (4.131)



www.manaraa.com

58 Replication-based Systems

10
0

10
1

10
2

10
6

10
7

10
8

10
9

Number of nodes

M
T

T
D

L 
(in

 d
ay

s)

 

 

r = 3
1/λ = 30000 h
1/µ = 30 h

clustered, deterministic rebuild
declustered, deterministic rebuild
clustered, exponential rebuild
declustered, exponential rebuild

Figure 4.2: MTTDL as a function of the number of nodes for replication factor
three.

MTTDLdeclus. ≈ (n− 1)µ2

4nλ3

M2
1

(
Gn−1

2
µ

)

M2

(
Gn−1

2
µ

) for r = 3. (4.132)

From (4.131) and (4.132), it is observed that the MTTDL of three-way repli-
cated systems under both placement schemes are directly proportional to the
cube of the mean time to node failure, 1/λ, and inversely proportional to
the square of the mean time to read all contents of a node during rebuild,
1/µ. In contrast to two-way replicated systems, it is seen that the MTTDL
depends on the rebuild distribution. For deterministic rebuild times, the ra-

tios M2
1 (Gµ)/M2(Gµ) and M2

1

(
Gn−1

2
µ

)
/M2

(
Gn−1

2
µ

)
become one. However,

for random rebuild times, these ratios are upper-bounded by one by Jensen’s
inequality. As an example, if the rebuild time distribution was exponential,
these ratios are equal to 1/2 and therefore,

MTTDLclus. ≈ µ2

2nλ3
for r = 3 (exponential rebuilds). (4.133)

MTTDLdeclus. ≈ (n− 1)µ2

8nλ3
for r = 3 (exponential rebuilds). (4.134)
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Figure 4.3: MTTDL as a function of the number of nodes for replication factor
four.

The MTTDL of a system using a three-way replicated system is plotted
against the number of nodes in the system for clustered and declustered place-
ments, as well as for deterministic and exponential rebuild times, in Figure 4.2.
It is observed that the rebuild time distribution scales down the MTTDL, but
leaves the behavior with respect to the number of nodes, n, unaffected. This
has also been verified by means of simulation in Chapter 7.

In contrast to two-way replicated systems, the difference in MTTDL be-
tween the two schemes for a three-way replicated system can be significant,
depending on the number of nodes, n. This is because, as seen from (4.131)
and (4.132), the MTTDL of clustered placement is inversely proportional to
n, whereas the MTTDL of declustered placement is roughly invariant with
respect to n. This is illustrated in Figure 4.2 in which MTTDL of double
parity codes is plotted against the number of nodes, n, in a log-log scale. The
lines corresponding to clustered placement have a slope of −1 indicating that
the MTTDL is inversely proportional to n, whereas the lines corresponding to
declustered placement have a slope of roughly 0 indicating that the MTTDL
is invariant with respect to n.
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4.3.3 Replication Factor 4

Plugging r = 4 in (4.83) and (4.127), we obtain the MTTDL values for four-
way replicated systems for clustered and declustered placement schemes, re-
spectively:

MTTDLclus. ≈ µ3

nλ4

M3
1 (Gµ)

M3(Gµ)
for r = 4. (4.135)

MTTDLdeclus. ≈ (n− 1)2(n− 2)µ3

24nλ4

M3
1

(
Gn−1

2
µ

)

M3

(
Gn−1

2
µ

) for r = 4. (4.136)

From (4.135) and (4.136), it is observed that the MTTDL of four-way repli-
cated systems under both placement schemes are directly proportional to the
fourth power of the mean time to node failure, 1/λ, and inversely proportional
to the cube of the mean time to read all contents of a node during rebuild, 1/µ.
As was the case in double parity codes, the MTTDL depends on the rebuild
distribution. For deterministic rebuild times, the ratios M3

1 (Gµ)/M3(Gµ) and

M3
1

(
Gn−1

2
µ

)
/M2

(
Gn−1

2
µ

)
become one. However, for random rebuild times,

these ratios are upper-bounded by one by Jensen’s inequality. As an example,
if the rebuild time distribution was exponential, these ratios are equal to 1/6
and therefore,

MTTDLclus. ≈ µ3

6nλ4
for r = 4 (exponential rebuilds). (4.137)

MTTDLdeclus. ≈ (n− 1)2(n− 2)µ3

144nλ4
for r = 4 (exponential rebuilds).

(4.138)

Comparing (4.138) with (4.136), it is observed that the rebuild time distri-
bution scales down the MTTDL, but leaves the behavior with respect to the
number of nodes, n, unaffected. This can be seen in the plots of MTTDL of
a system using four-way replication against the number of nodes in the sys-
tem for clustered and declustered placements, as well as for deterministic and
exponential rebuild times, in Figure 4.3. Also, as in the case of double parity
codes, the difference in MTTDL between the two schemes can be significant,
depending on the number of nodes, n, in the system. This is because, as
seen from (4.135) and (4.136), the MTTDL of clustered placement is inversely
proportional to n, whereas the MTTDL of declustered placement is roughly
proportional to the square of n. This is illustrated in Figure 4.3 in which
MTTDL is plotted against the number of nodes, n, in a log-log scale. The
lines corresponding to clustered placement have a slope of −1 indicating that
the MTTDL is inversely proportional to n, whereas the lines corresponding to
declustered placement have a slope of roughly 2 indicating that the MTTDL
is proportional to the square of n.



www.manaraa.com

4.3. Clustered vs. Declustered Replica Placement 61

Remark 4.13. The relative error in the approximations (3.14), (4.44), and
(4.45) tends to zero as the ratio λ/µ tends to zero. So, the expressions for
MTTDL obtained in this thesis are better approximations for smaller values of
λ/µ. This implies that, if simulation-based MTTDL values match the theoreti-
cally predicted MTTDL values for a certain value of λ/µ, it will also match for
all smaller values of λ/µ. This fact is used in Chapter 7, where simulations
are shown to match theory for values of λ/µ that are much larger than those
observed in real-world storage systems, thereby establishing the applicability of
the theoretical results to real-world storage systems.



www.manaraa.com



www.manaraa.com

Impact of Limited
Network Rebuild
Bandwidth 5
As seen in the previous chapter, the manner in which redundant data are
placed across the nodes in the system, that is, data placement, affects both
how fast and how effective the rebuild process can be. There are two main
ways in which the data placement, and hence the rebuild process, affects the
reliability of the system. Firstly, if the redundant data are placed across several
nodes in the system, the rebuild process can benefit by parallelizing the data
restoration process. The restoration time can be minimal provided there is
sufficient network bandwidth available. Minimal restoration time implies that
there is a shorter window of time during which additional node failures can
hinder the rebuild. Secondly, spreading the replicas of data across several
nodes also exposes these replicas to the failure of any of these nodes, thereby
increasing the probability of failure of the rebuild process. Interestingly, for
two-way replicated systems, these two effects cancel each other out resulting
in similar reliability for all data placement schemes [15]. For higher replication
factors, however, the first effect is more dominant as the second effect tends to
expose less amount of data to the danger of irrecoverable loss because of the
spreading of replicas across several nodes [18]. When the network bandwidth
is limited though, the rebuild times may be longer and therefore the former
factor may be affected. This imbalance leads to interesting results in terms
of the mean time to data loss (MTTDL) of the system. In this chapter, we
explore this effect and show how the network bandwidth constraint affects the
system MTTDL and how we can design schemes that achieve high reliability
under these conditions. The results of this chapter can also be used to adapt
the data placement schemes when the available network rebuild bandwidth
or the number of nodes in the system changes so that system reliability is
maintained at a high level at all times.

63
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Table 5.1: Parameters of a storage system with limited network rebuild band-
width

c amount of data stored on each node (bytes)
n number of storage nodes
1/λ mean time to failure of a storage node (s)
b average rebuild bandwidth at each storage node (bytes/s)
r replication factor
k spread factor of the data placement scheme

Bmax maximum network rebuild bandwidth (bytes/s)

1/µ average time to read/write c amount of data from/to a node
during rebuild (1/µ = c/b)

N effective maximum number of nodes from which distributed re-
build can occur at full speed in parallel (N = Bmax/b)

Beff(k̃) effective distributed rebuild bandwidth involving k̃ nodes
(Beff(k̃) = min(k̃b, B))

Seff(k̃) effective speed of distributed rebuild involving k̃ nodes (Seff(k̃) =
Beff(k̃)/2)

5.1 Limited Network Rebuild Bandwidth

In this section, we describe the system model under limited network rebuild
bandwidth. Table 5.1 lists the parameters used. The upper and lower parts of
the table list the set of independent and dependent parameters, respectively.

The rebuild process used to restore the data lost by failed nodes is assumed
to be both intelligent and distributed. By an intelligent rebuild process, we
mean that the system always attempts to first recover the copies (replicas) of
the most critical data, that is, data that has the least number of replicas left
in the system. In a distributed rebuild process, the data lost by a failed node
is restored by reading surviving replicas and creating a new replica of the data
in reserved spare space on surviving nodes as illustrated in Fig. 2.1. More
specifically, if the surviving replicas of the most critical data are stored across
k̃ nodes, these replicas are used to rebuild the lost data in the spare space
on those k̃ nodes such that no two copies of the same data are stored on the
same node. This is done so that the rebuild process can make use of the node
rebuild bandwidth available at all k̃ nodes in parallel. Once all lost data is
recovered, this newly recovered data is transferred to new replacement nodes.
For clustered placement, the surviving replicas of the most critical data of a
cluster are present on all the surviving nodes of that cluster. Therefore, the
replicas of this data are read from one of the surviving nodes and written to a
new spare node, as it is not possible to do a distributed rebuild as described
earlier without creating two replicas of the same data on the same node.

During the rebuild process, an average read-write bandwidth of b bytes/s is
assumed to be reserved at each node exclusively for the rebuild. This is usually
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only a fraction of the total bandwidth available at each node; the remainder
is being used to serve user requests. If 1/µ is the time to rebuild a storage
node in clustered placement, that is, the time required to read all contents of
a node and write to a new spare node, then

1

µ
=

c

b
. (5.1)

In a distributed rebuild process, if the surviving replicas of the most critical
data are stored across k̃ nodes, then the total network bandwidth required
to perform rebuild at full speed is k̃b. Let the maximum available network
bandwidth for rebuilds be denoted by Bmax. We will assume that Bmax ≥ b as
Bmax < b is a degenerate case. So, if the available network rebuild bandwidth
is Bmax, the total bandwidth that can be used by rebuilds cannot exceed Bmax.
Therefore, the effective distributed rebuild bandwidth, Beff(k̃), is given by

Beff(k̃) := min(k̃b, Bmax) = min(k̃, N)b, (5.2)

where N specifies the effective maximum number of nodes from which rebuild
can occur in parallel at full speed and is given by

N :=
Bmax

b
. (5.3)

Note that N may not be an integer; it only represents the effective maxi-
mum number of nodes from which distributed rebuild can occur at full speed.
Substituting for b from (5.1) into (5.2), we get

Beff = min(k̃, N)cµ. (5.4)

The distributed rebuild process in involves reading the replicas of the data to
be rebuilt from k̃ nodes and copying to the spare space of these nodes in such
a way that no data is copied to a node in which its replica is already present.
As equal amounts of data are read from and written to each node during the
distributed rebuild process owing to its symmetry, the average rate of rebuild,
Seff(k̃), is equal to half of the effective distributed rebuild bandwidth, Beff(k̃),
that is,

Seff(k̃) =
1

2
Beff(k̃) =

1

2
min(k̃, N)cµ. (5.5)

For the sake of clarity and consistency with earlier chapters, we will only use
expressions involving µ and N rather than b and Bmax in the remainder of
the paper. The implicit relationship between µ, N , b, and Bmax is given in
Table 2.1.

Clustered placement is an exception as it does not use distributed rebuild.
The effective speed of rebuild for clustered placement is cµ because data is
read from any one of the surviving nodes of the cluster to which the failed
node belonged, and then written to a spare node.
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5.2 Effect of Limited Network Rebuild

Bandwidth on Reliability

In this section, we consider different replica placement schemes as discussed
in Section 2.4. Under limited network rebuild bandwidth, we would like to
estimate their reliability in terms of their MTTDL using the relations (3.14),
(4.44), and (4.45), and understand how the limited network bandwidth and
replica placement affect data reliability. To use the expressions (4.44) and
(4.45) for PDL, we need to compute the conditional means of rebuild times
in each exposure level, µe, e = 1, · · · , r − 1, and the number of nodes whose
failure can cause a transition to the next exposure level, ñe, e = 1, · · · , r − 1.
The values of these quantities depend on the underlying replica placement and
the nature of the rebuild process used. The notations used in this chapter are
the same those described in Section 4.2.

5.2.1 Clustered Replica Placement

Since Bmax > b = cµ, clustered replica placement in not affected by the value
of Bmax. This is because the rebuild process in clustered placement always
involves reading data from any one of the surviving nodes at an average speed
of cµ and writing it to a spare node at the same speed. Therefore, the MTTDL
values for clustered placement are the same as in the previous chapter, and
are given by (4.83).

5.2.2 Other Symmetric Replica Placement Schemes

For symmetric placement schemes other than clustered placement, that is,
for spread factors k > r, the rebuilds may be affected by the value of Bmax

as indicated by (5.3), (5.4), and (5.5). This may also impact the MTTDL
values of these replica placement schemes. Here, we derive the expressions
for MTTDL of these replica placement schemes under limited network rebuild
bandwidth.

Exposure Level 1

Following a first-node failure at t1, the system enters exposure level 1 and the
rebuild process begins. The amount of data to be rebuilt at this exposure level
is equal to the capacity of the failed node, c, that is,

D1(t1) = c. (5.6)

By the nature of the symmetric placement scheme with spread factor k, the
r−1 remaining replicas of the data corresponding to the failed node are spread
equally across k − 1 other surviving nodes of the system. As described in
Section 5.1, the distributed rebuild process involves reading the replicas of the
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data to be rebuilt from the k−1 and copying to the spare space of these nodes
in such a way that no data is copied to a node in which its replica is already
present. As this distributed rebuild process involves k − 1 nodes, the average
rate of rebuild in exposure level 1 is given by (5.5) for k̃ = k − 1, that is,

S1 = Seff(k − 1) =
1

2
min(k − 1, N)cµ. (5.7)

The average time required for this rebuild, 1/µ1, is obtained by dividing the
amount of data to be rebuilt, given by (5.6), by the average speed of rebuild,
given by (5.7). Thus,

1

µ1

= E[R1] =
D1(t1)

S1

=
1

min(k − 1, N)µ/2
. (5.8)

According to our model, the rebuild time, R1, is distributed according to Gµ1 ,
that is,

R1 ∼ Gµ1 = Gmin(k−1,N)µ/2. (5.9)

There are k−1 nodes in the system that contain equal amounts of the replicas
corresponding to the most-exposed data. So, the failure of any of these nodes
during the rebuild period R1 will cause the system to enter exposure level
2. Therefore, the number of nodes whose failure during rebuild can cause a
transition to the next exposure level is given by

ñ1 = k − 1. (5.10)

When one of the ñ1 nodes fail before rebuild, the system enters exposure level
2.

Exposure Level 2

The system enters exposure level 2 from exposure level 1 because one of the ñ1

nodes fails during the rebuild period R1. Consider an instance of the rebuild
period,

R1 = τ1, (5.11)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from 1 to 2 occurred,

α1 = a1. (5.12)

The remaining time to complete rebuild at exposure level 1 when the system
entered exposure level 2 is the product of R1 and α1, namely, a1τ1. As the
average speed of rebuild in exposure is S1, it follows that the amount of the
most-exposed data not rebuilt when the exposure level transition occurred,
D1(t

−
2 ), is given by

D1(t
−
2 ) = α1R1S1 =

1

2
min(k − 1, N)cµa1τ1, (5.13)
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which is essentially the product of (5.7), (5.11), and (5.12). At the time of
transition from exposure level 1 to 2, t2, not all of this D1(t

−
2 ) amount of

data loses a second copy. As described in Section 2.4, due to the nature of
the symmetric placement scheme, the two failed nodes share copies of only
a fraction r−1

k−1
of this data. So during the exposure level transition, only

r−1
k−1

D1(t
−
2 ) amount of data loses a second copy. Therefore, the amount of

most-exposed data in exposure level 2, D2(t2), is given by

D2(t2) =
r − 1

k − 1
D1(t

−
2 ) =

1

2

r − 1

k − 1
min(k − 1, N)cµa1τ1. (5.14)

By the nature of the symmetric placement scheme with spread factor k, the
r − 2 remaining replicas of the most-exposed data are spread equally across
k − 2 surviving nodes of the system. The distributed rebuild process involves
reading these replicas from these nodes and copying to the spare space of these
nodes in such a way that no data is copied to a node in which its replica is
already present. As this distributed rebuild process involves k − 2 nodes, the
average rate of rebuild in exposure level 2 is given by (5.5) for k̃ = k− 2, that
is,

S2 = Seff(k − 2) =
1

2
min(k − 2, N)cµ. (5.15)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µ2, of the rebuild time in the
second exposure level, R2, is obtained by dividing (5.14) by (5.15), that is,

1

µ2

= E[R2|R1 = τ1, α1 = a1] =
D2(t2)

S2

=
r − 1

k − 1

min(k − 1, N)

min(k − 2, N)
a1τ1. (5.16)

There are now k − 3 nodes in the system that contain equal amounts of the
replicas corresponding to the most-exposed data. So, the failure of any of these
nodes during the rebuild period R2 will cause the system to enter exposure
level 3. Therefore, the number of nodes whose failure during rebuild can cause
a transition to the next exposure level is given by

ñ2 = k − 3. (5.17)

Exposure Level e

The computation of the conditional mean 1/µe and the number of nodes ñe

for a general exposure level e = 2, · · · , r − 1 is similar to the computation
of these quantities for exposure level 2 as described above. Firstly, we note
that the distributed rebuild process in each exposure level e always involves
reading replicas of the data to be rebuilt from a set of k − e surviving nodes
and copying it to the spare spaces of these nodes in such a way that no data
is copied to a node in which its replica is already present. As this distributed
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rebuild process involves k − e nodes, the average rate of rebuild in exposure
level e is given by (5.5) for k̃ = k − e, that is,

Se = Seff(k − e) =
1

2
min(k − e,N)cµ, e = 1, · · · , r − 1. (5.18)

Now, the system enters exposure level e from exposure level e− 1 because
one of the ñe−1 nodes fails during the rebuild period Re−1. Consider an instance
of the rebuild period,

Re−1 = τe−1, (5.19)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from e− 1 to e occurred,

αe−1 = ae−1. (5.20)

The remaining time to complete rebuild at exposure level e−1 when the system
entered exposure level e is the product of Re−1 and αe−1, namely, ae−1τe−1. As
the average speed of rebuild in exposure is Se−1, it follows that the amount of
the most-exposed data not rebuilt when the exposure level transition occurred,
De−1(t

−
e ), is given by

De−1(t
−
e ) = αe−1Re−1Se−1 =

1

2
min(k − e+ 1, N)cµae−1τe−1, (5.21)

which is essentially the product of (5.18), (5.19), and (5.20). At the time of
transition from exposure level e−1 to e, te−1, not all of this D1(t

−
2 ) amount of

data loses its eth copy. Due to the nature of the symmetric placement scheme
with spread factor k, the newly failed nodes shares copies of only a fraction
r−e+1
k−e+1

of this data. So during the exposure level transition, only r−e+1
k−e+1

D1(t
−
2 )

amount of data loses its eth copy. Therefore, the amount of most-exposed data
in exposure level e, De(te), is given by

De(te) =
r − e+ 1

k − e+ 1
De(t

−
e ) =

1

2

r − e+ 1

k − e+ 1
min(k − e+ 1, N)cµae−1τe−1.(5.22)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µe, of the rebuild time in the
eth exposure level, Re, is obtained by dividing (5.22) by (5.18), that is,

1

µe

= E[Re|Re−1 = τe−1, αe−1 = ae−1] (5.23)

=
De(te)

Se

(5.24)

=
r − e+ 1

k − e+ 1

min(k − e+ 1, N)

min(k − e,N)
ae−1τe−1. (5.25)

There are now k − e nodes in the system that contain equal amounts of the
replicas corresponding to the most-exposed data. So, the failure of any of these



www.manaraa.com

70 Impact of Limited Network Rebuild Bandwidth

nodes during the rebuild period Re will cause the system to enter exposure level
e+ 1. Therefore, the number of nodes whose failure during rebuild can cause
a transition to the next exposure level is given by

ñe = k − e. (5.26)

MTTDL under Model A

Recall that, under model A, following each exposure level transition, the sys-
tem is assumed to reconfigure its rebuild process entirely to rebuild the most-
exposed data blocks in the new exposure level. This model may be applicable
for a clustered placement scheme, where the node from which data was being
rebuilt failed and hence the system has to rebuild from another node in the
cluster. This model may also be applicable for symmetric placement schemes
with a small spread factor k.

Having computed the key quantities 1/µe and ñe for e = 1, · · · , r − 1, we
are now ready to compute PDL using the expression (4.44) for model A, and
then MTTDL using (3.14). By substituting the values of 1/µe and ñe from
(5.8), (5.25), and (5.26) into (4.44), we obtain

PDL(k) ≈ λr−1 × (k − 1) · · · (k − r + 1)×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1

× gmin(k−1,N)µ
2

(τ1) · · · gmin(k−r+1,N)
min(k−r+2,N)

k−r+2
2ar−2τr−2

(τr−1)d~ad~τ

)

for k = r + 1, · · · , n (model A). (5.27)

As in (4.44) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2.

Replication factors r ≤ 3: The expression (5.27) for PDL under model A
cannot, in general, be further simplified without considering a particular family
of rebuild distributions Gµ. However, for r ≤ 3, a closed form expression for
PDL, and hence MTTDL, can be obtained under model A. This is illustrated
by deriving the closed form expression for r = 3 by substituting r = 3 in (5.27)
and simplifying as follows.

PDL(k) ≈ λ2 × (k − 1)(k − 2)×
∫ ∞

τ1=0

∫ ∞

τ2=0

∫ 1

a1=0

(
τ1τ2

× gmin(k−1,N)µ
2

(τ1)gmin(k−2,N)
min(k−1,N)

k−1
2a1τ1

(τ2)da1dτ2dτ1

)
(5.28)



www.manaraa.com

5.2. Effect of Limited Network Rebuild Bandwidth on Reliability 71

= (k − 1)(k − 2)λ2

(∫ ∞

τ1=0

τ1gmin(k−1,N)µ
2

(τ1)

∫ 1

a1=0

∫ ∞

τ2=0

(
τ2

× gmin(k−2,N)
min(k−1,N)

k−1
2a1τ1

(τ2)
)
dτ2da1dτ1

)

for r = 3 and k = 4, · · · , n (model A). (5.29)

Noting that
∫ ∞

τ2=0

τ2gmin(k−2,N)
min(k−1,N)

k−1
2a1τ1

(τ2)dτ2 =
min(k − 1, N)

min(k − 2, N)

2a1τ1
k − 1

, (5.30)

we get

PDL(k) ≈ 2(k − 2)
min(k − 1, N)

min(k − 2, N)
λ2

∫ ∞

τ1=0

τ 21 gmin(k−1,N)µ
2

(τ1)

∫ 1

a1=0

a1da1dτ1

(5.31)

= (k − 2)
min(k − 1, N)

min(k − 2, N)
λ2

∫ ∞

τ1=0

τ 21 gmin(k−1,N)µ
2

(τ1)dτ1 (5.32)

= (k − 2)
min(k − 1, N)

min(k − 2, N)
λ2M2(Gmin(k−1,N)µ/2)

for r = 3 and k = 4, · · · , n (model A), (5.33)

where M2(Gmin(k−1,N)µ/2), as defined in (4.46), denotes the second raw moment
of the rebuild distribution Gmin(k−1,N)µ/2. The expression for MTTDL then
follows from (3.14):

MTTDL(k) ≈ 1

nλPDL

(5.34)

≈ min(k − 2, N)

n(k − 2)min(k − 1, N)λ3M2(Gmin(k−1,N)µ/2)

for r = 3 and k = 4, · · · , n (model A). (5.35)

Multipliying and dividing (5.35) by square of the mean of the rebuild time
distribution Gmin(k−1,N)µ/2,

M2
1 (Gmin(k−1,N)µ/2) =

1

(min(k − 1, N)µ/2)2
(5.36)

we get

MTTDL(k) ≈ µ2

4nλ3

min(k − 2, N)min(k − 1, N)

k − 2

M2
1 (Gmin(k−1,N)µ/2)

M2(Gmin(k−1,N)µ/2)

for r = 3 and k = 4, · · · , n (model A). (5.37)

For deterministic rebuild times, the second raw moment, M2(Gmin(k−1,N)µ/2), is
equal to the square of the first raw moment, M2

1 (Gmin(k−1,N)µ/2), and therefore,
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the term M2
1 (Gmin(k−1,N)µ/2)/M2(Gmin(k−1,N)µ/2) evaluates to one. However, if

the rebuild times are random, the second raw moment is always greater than
the square of the first raw moment by Jensen’s inequality, and therefore, the
term M2

1 (Gmin(k−1,N)µ/2)/M2(Gmin(k−1,N)µ/2) is smaller than one. The closed
form expression for r = 2 can be derived similarly and is given by

MTTDL(k) ≈ µ

2nλ2

min(k − 1, N)

k − 1
for r = 2 and k = 3, · · · , n (model A). (5.38)

Replication factors r > 3: For replication factors r > 3, the evaluation of
PDl under model A involves computing the expectations of functions involving
higher raw moments of Gµ, which cannot be done without considering a par-
ticular family of rebuild distributions. However, given a particular family of
rebuild distributions, the derivation of MTTDL involves successively evaluat-
ing the integrals in (5.27) to compute PDL(k), and then using (3.14) to obtain
MTTDL(k).

Declustered Replica Placement: MTTDL under Model B

In contrast to model A, we assume in model B that, following an exposure
level transition, the system has to do little or no reconfiguration of the rebuild
process to rebuild the most-exposed data in the new exposure level. This is
the case in a symmetric placement scheme with a large spread factor k, where
the rebuild was being done from several nodes, and therefore, the failure of
one node does not significantly affect the rebuild process. This implies that
the rebuild time in the new exposure level is completely determined by the
rebuild time and the fraction of most-exposed data not rebuilt in the previous
exposure level.

By substituting the values of 1/µe and ñe from (5.8), (5.25), and (5.26)
into (4.45), we obtain

PDL(k) ≈ λr−1 × (k − 1) · · · (k − r + 1)

×
∫

τ1

· · ·
∫

τr−1

∫

a1

· · ·
∫

ar−2

(
τ1 · · · τr−1gmin(k−1,N)µ

2

(τ1)

× δ

(
τ2 −

r − 1

k − 1

min(k − 1, N)

min(k − 2, N)
a1τ1

)

· · · δ
(
τr−1 −

2

k − r + 2

min(k − r + 2, N)

min(k − r + 1, N)
ar−2τr−2

)
d~ad~τ

)

for k = r + 1, · · · , n (model B). (5.39)

As in (4.45) the integrals are from 0 to ∞ for τe, e = 1, · · · , r− 1, and from 0
to 1 for ae, e = 1, · · · , r − 2. In contrast to model A, closed form expressions
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in terms of the raw moments of the rebuild distribution can be obtained for
model B as follows. By changing the order of integrals in (5.39), we obtain

PDL(k) ≈ λr−1 × (k − 1) · · · (k − r + 1)

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−1

(
τ1 · · · τr−1gmin(k−1,N)µ

2

(τ1)

× δ

(
τ2 −

r − 1

k − 1

min(k − 1, N)

min(k − 2, N)
a1τ1

)

· · · δ
(
τr−1 −

2

k − r + 2

min(k − r + 2, N)

min(k − r + 1, N)
ar−2τr−2

)

× dτr−1 · · · dτ1d~a
)

(5.40)

= λr−1 × (k − 1) · · · (k − r + 1)× 2

k − r + 2

min(k − r + 2, N)

min(k − r + 1, N)

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−2

(
τ1 · · · τ 2r−2ar−2gmin(k−1,N)µ

2

(τ1)

× δ

(
τ2 −

r − 1

k − 1

min(k − 1, N)

min(k − 2, N)
a1τ1

)

· · · δ
(
τr−2 −

3

k − r + 3

min(k − r + 3, N)

min(k − r + 2, N)
ar−3τr−3

)

× dτr−2 · · · dτ1d~a
)

(5.41)

= λr−1 × (k − 1) · · · (k − r + 1)× 2

k − r + 2

min(k − r + 2, N)

min(k − r + 1, N)

×
(

3

k − r + 3

min(k − r + 3, N)

min(k − r + 2, N)

)2

×
∫

a1

· · ·
∫

ar−2

∫

τ1

· · ·
∫

τr−3

(
τ1 · · · τ 3r−3a

2
r−3ar−2gmin(k−1,N)µ

2

(τ1)

× δ

(
τ2 −

r − 1

k − 1

min(k − 1, N)

min(k − 2, N)
a1τ1

)

· · · δ
(
τr−3 −

4

k − r + 4

min(k − r + 4, N)

min(k − r + 3, N)
ar−4τr−4

)

× dτr−3 · · · dτ1d~a
)

(5.42)

...
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= λr−1 × (min(k − 1, N))r−1 ×
r−2∏

e=1

(
r − e

k − e

)r−e−1

×
r−1∏

e′=1

k − e′

min(k − e′, N)

×
∫

a1

· · ·
∫

ar−2

∫

τ1

τ r−1
1 ar−2

1 · · · a2r−3ar−2gmin(k−1,N)µ
2

(τ1)dτ1d~a

for k = r + 1, · · · , n (model B). (5.43)

Here, steps (5.41)–(5.43) follow by successively integrating over τr−1, · · · , τ2,
using the Dirac delta function’s property, canceling out terms of the form
min(k − r + e,N), e = 1, · · · , r − 2, and rewriting the terms outside the
integral. Changing the order of the integrals and integrating out a1, · · · , ar−2,
we get

PDL(k) ≈ λr−1 × (min(k − 1, N))r−1 ×
r−2∏

e=1

(
r − e

k − e

)r−e−1

×
r−1∏

e′=1

k − e′

min(k − e′, N)

×
∫

τ1

τ r−1
1 g (n−1)µ

2

(τ1)
1

(r − 1)!
dτ1

= λr−1 × (min(k − 1, N))r−1

(r − 1)!
×

r−2∏

e=1

(
r − e

k − e

)r−e−1

×
r−1∏

e′=1

k − e′

min(k − e′, N)

×Mr−1(Gmin(k−1,N)µ/2)

for k = r + 1, · · · , n (model B), (5.44)

where Mr−1(Gmin(k−1,N)µ/2), as defined in (4.46), denotes the (r − 1)th raw
moment of the rebuild distribution Gmin(k−1,N)µ/2. The expression for MTTDL
then follows from (3.14):

MTTDL(k) ≈ 1

nλPDL

(5.45)

≈ 1

nλrMr−1(Gmin(k−1,N)µ/2)
× (r − 1)!

(min(k − 1, N))r−1

×
r−2∏

e=1

(
k − e

r − e

)r−e−1

×
r−1∏

e′=1

min(k − e′, N)

k − e′

for k = r + 1, · · · , n (model B). (5.46)

Multiplying and dividing (5.46) by the (r − 1)th power of the mean of the
rebuild time distribution Gmin(k−1,N)µ/2,

M r−1
1 (Gmin(k−1,N)µ/2) =

1

(min(k − 1, N)µ/2)r−1 (5.47)
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we get

MTTDL(k) ≈ µr−1

nλr

M r−1
1 (Gmin(k−1,N)µ/2)

Mr−1(Gmin(k−1,N)µ/2)

(r − 1)!

2r−1

r−2∏

e=1

(
k − e

r − e

)r−e−1

×
r−1∏

e′=1

min(k − e′, N)

k − e′

for k = r + 1, · · · , n (model B). (5.48)

For deterministic rebuild times, the (r−1)th raw moment,Mr−1(Gmin(k−1,N)µ/2),
is equal to the (r− 1)th power of the first raw moment, M r−1

1 (Gmin(k−1,N)µ/2),
and therefore, the term M r−1

1 (Gmin(k−1,N)µ/2)/Mr−1(Gmin(k−1,N)µ/2) evaluates
to one. For random rebuild times, by the Jensen’s inequality, the (r−1)th raw
moment, Mr−1(Gmin(k−1,N)µ/2), is always greater than the (r−1)th power of the
first raw moment, M r−1

1 (Gmin(k−1,N)µ/2), and therefore, their ratio evaluates to
less than one.

As an example, if Gmin(k−1,N)µ/2 is exponential, the expression for MTTDL
reduces to the following:

MTTDL(k) ≈ µr−1

nλr

1

2r−1

r−2∏

e=1

(
k − e

r − e

)r−e−1

×
r−1∏

e′=1

min(k − e′, N)

k − e′

for k = r + 1, · · · , n, when Gmin(k−1,N)µ/2 is exponential (model B). (5.49)

5.3 MTTDL vs. Network Rebuild Bandwidth

In this section, we study the MTTDL of storage systems under limited network
rebuild bandwidth. Note that the MTTDL values under models A and B, as
given by (5.37), (5.38), and (5.48), do not differ for r ≤ 3. Furthermore, the
difference between models A and B for r > 3 is typically only a constant factor
that depends on the rebuild distribution. If the rebuild times are deterministic,
there is no difference between models A and B, and therefore, they agree on
the MTTDL values for all replication factors. So, without loss of generality,
we only consider the MTTDL values under model B for further discussion in
this section. Similarly, the effect of rebuild distribution under model B is seen
to be a constant factor that depends on the rebuild distribution. Therefore,
without loss of generality, we compare different placement schemes only under
deterministic rebuilds, for which the ratio of the raw moments evaluates to
one.

For comparison, we consider four different symmetric placement schemes
defined by their spread factors. Firstly, we consider the clustered placement
scheme, whose spread factor is k = r. Next, we consider the declustered
placement scheme, whose spread factor scales with the number of nodes as
k = n. It can be seen from (5.48) that, for constant spread factors that do not
scale with n, the behavior of MTTDL with respect to n is similar to clustered
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placement. Therefore, we consider two other placement schemes whose spread
factors depend on the system size n: one with spread factor k = ⌊√n⌋, and
another with spread factor k = min(n,N).

The expression for MTTDL in (5.48) can be broken down as follows to
understand the effect of limited network rebuild bandwidth. When there is
sufficient network rebuild bandwidth for the distributed rebuild process to
take place at full speed, that is, when the spread factor k ≤ N + 1, the terms
of the form min(k− e′, N) become equal to k− e′ for e′ = 1, · · · , r−1, and the
second product in expression (5.48) for MTTDL becomes equal to one. For
k = n, that is, for declustered placement, and for k ≤ N +1, expression (5.48)
is the same as expression (4.127) in Chapter 4. On the other hand, when the
spread factor k ≥ N + r− 1, the network rebuild bandwidth is insufficient for
a distributed rebuild process at full speed and therefore the system reliability
is affected negatively. This can be seen from the fact that the second product
in expression (5.48) for MTTDL becomes smaller than one and roughly scales
as k−(r−1).

Now, if we denote the MTTDL under a network rebuild bandwidth con-
straint N by MTTDLN and the MTTDL under no network bandwidth con-
straint, that is, N = ∞, by MTTDL∞, then it follows from (5.48) that

MTTDLN(k) = MTTDL∞(k)×
r−1∏

e′=1

min(k − e′, N)

k − e′
, (5.50)

where MTTDL∞(k) is given by

MTTDL∞(k) ≈ µr−1

nλr

(r − 1)!

2r−1

r−2∏

e=1

(
k − e

r − e

)r−e−1

. (5.51)

5.3.1 Replication Factor 2

For declustered placement, that is, for k = n, the expression for MTTDL
(5.48) under deterministic rebuilds reduces to

MTTDLdeclus. ≈





µ

2nλ2
when n ≤ N + 1

µN

2n(n− 1)λ2
when n ≥ N + 1.

(5.52)

The above expressions show that, when the network rebuild bandwidth is not
sufficient to perform distributed rebuild process at full speed, the MTTDL
becomes inversely proportional to the square of the number of nodes instead
of being inversely proportional to the number of nodes. This drastic change
in the MTTDL behavior as the system scales is shown in Figure 5.1. The
figure shows the plots of MTTDL as a function of the number of nodes for
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Figure 5.1: MTTDL as a function of the number of nodes for replication factor
two when the network rebuild bandwidth can support only up to N = 8 nodes
at full speed during distributed rebuild.

the four different placement schemes considered. When the network rebuild
bandwidth can support only up to N = 8 nodes at full speed during distributed
rebuild, it is seen that the MTTDL of declustered placement drops significantly
compared to other placement schemes which are not affected (because their
spread factors are less than N). For a scheme whose spread factor varies as
⌊√n⌋, the change in MTTDL behavior is seen around n = N2 = 64 nodes.

5.3.2 Replication Factor 3

For declustered placement, the expression for MTTDL (5.48) under determin-
istic rebuilds reduces to

MTTDLdeclus. ≈





µ2(n− 1)

4nλ3
when n ≤ N + 1

µ2N2

4n(n− 2)λ3
when n ≥ N + 2.

(5.53)

The change in the MTTDL behavior due to limited network rebuild bandwidth
is greater than that observed for replication factor two; it goes from being
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Figure 5.2: MTTDL as a function of the number of nodes for replication factor
three when the network rebuild bandwidth can support only up to N = 12
nodes at full speed during distributed rebuild.

constant with respect to the number of nodes when network rebuild bandwidth
is sufficient, to being inversely proportional to the square of the number of
nodes when the network rebuild bandwidth is limited. This is also shown in
Fig. 5.2. Interestingly, for r = 3, limiting the spread factor to N , that is,
setting k = min(n,N), can achieve much higher MTTDL than the declustered
placement scheme for n ≥ N + 2.

5.3.3 Replication Factor 4

For declustered placement, the expression for MTTDL (5.48) reduces to

MTTDLdeclus. ≈





µ3(n− 1)2(n− 2)

24nλ4
when n ≤ N + 1

µ3N2(N + 1)

24(N + 2)λ4
when n = N + 2

µ3(n− 1)N3

24n(n− 3)λ4
when n ≥ N + 3.

(5.54)
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Figure 5.3: MTTDL as a function of the number of nodes for replication factor
two when the network rebuild bandwidth can support only up to N = 16 nodes
at full speed during distributed rebuild.

The above expressions are plotted in Fig. 5.3. For replication factor 4, the
MTTDL values of a scheme that limits the spread factor to N , that is, k =
min(n,N), is comparable to the MTTDL values of the declustered scheme
for which k = n. This is because, although the limited network bandwidth
slows down rebuilds in a declustered placement scheme, the amount of most-
exposed data to be rebuilt as the system goes to higher exposure levels also
decreases. It appears that, for declustered placement, the negative influence
of limited network bandwidth is effectively countered by the positive influence
of decreasing amounts of critical data as additional nodes fail.

5.3.4 Replication Factor 5

For declustered placement, the expression for MTTDL (5.48) under determin-
istic rebuilds reduces to
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Figure 5.4: MTTDL as a function of the number of nodes for replication factor
two when the network rebuild bandwidth can support only up to N = 20 nodes
at full speed during distributed rebuild.

MTTDLdeclus. ≈





µ4(n− 1)3(n− 2)2(n− 3)

768nλ5
when n ≤ N + 1

µ4(N + 1)2N3(N − 1)

768(N + 2)λ5
when n = N + 2

µ4(N + 2)2(N + 1)N3

768(N + 3)λ5
when n = N + 3

µ4(n− 1)2(n− 2)N4

768n(n− 4)λ5
when n ≥ N + 4.

(5.55)

The above expressions are plotted in Fig. 5.4. The positive effect of de-
creasing amounts of critical data as additional nodes fail is stronger than that
observed for replication factor four.
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5.4 Optimal Data Placement for High Reliability

Using expression (5.48) for MTTDL, one can find the optimal value of the
spread factor k for which the corresponding MTTDL is maximized. Clearly,
the optimal spread factor depends on the number of nodes n and the maximum
network rebuild bandwidth Bmax. In a dynamically changing storage system,
the number of nodes and the available network rebuild bandwidth Bmax may
change over time. As a result, the optimal spread factor may change as well.
In this case, one could consider redistributing the data in accordance to the
new optimal spread factor. Such a scheme ensures that the system reliability
constantly remains at a high level.



www.manaraa.com



www.manaraa.com

Erasure Coded Systems 6
As an alternative to replication, modern data storage systems employ advanced
erasure codes to protect data from storage node failures because of their abil-
ity to provide high data reliability as well as high storage efficiency. The use
of such erasure codes can be dated back to as early as the 1980s when they
were applied for building systems with redundant arrays of inexpensive disks
(RAID) [16]. When nodes fail, storage systems try to maintain the redun-
dancy through node rebuild processes that use the data from the surviving
nodes to reconstruct the lost data in new replacement nodes. As these rebuild
processes take a finite amount of time, there exists a non-zero probability of
further node failures during rebuild that can cause the system to lose enough
redundant data to render some of the originally stored data irrecoverable. The
average amount of time taken by the system to end up in irrecoverable data
loss, also known as the mean time to data loss, or MTTDL, is a measure of
reliability commonly used to compare different coding schemes and study the
effect of various design parameters. As, for performance reasons, the length
of codewords in an erasure coded system is typically much smaller than the
number of storage nodes in the system, there exist a large number of possi-
ble ways in which codewords can be stored across the nodes of the system.
However, most reliability analyses in the literature are performed under the
assumption that the number of storage nodes is equal to the codeword length.
In addition, some of the reliability analyses assume a constant probability of
additional node failures during rebuild. For replication-based systems, it is
well-known that the MTTDL is significantly affected by the choice of place-
ment of replicas. In particular, it was shown in Chapter 4 that the declustered
replica placement scheme can provide significantly higher reliability than clus-
tered placement, especially for large storage systems. In this chapter, these
results are extended to erasure coded systems and it is shown that a declus-
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tered placement of codewords can significantly improve the system reliability.
Just as in the case of replication-based systems, the reliability analysis of era-
sure coded systems in this chapter is detailed, in the sense that it accounts for
the rebuild times involved, the amounts of partially rebuilt data when addi-
tional nodes fail during rebuild, and the fact that most modern systems utilize
an intelligent rebuild process by rebuilding the most critical codewords first.

6.1 Erasure Codes in Data Storage

In data storage systems, an erasure code, in the most general sense, is a map-
ping from a set of l user data blocks (or symbols) to a set of m > l blocks,
called a codeword, in such as way that some subset of the m blocks of the
codeword can be used to decode the l user data blocks. Optimal erasure codes
or maximum distance separable codes (MDS codes) have the property that any
l out of m symbols can be used to decode a codeword. Such an erasure code
is referred to as an (l,m)-MDS code. Although the techniques developed here
may be applicable to general non-MDS erasure codes as well, we will restrict
our reliability analysis to MDS codes in this thesis.

Typically, the advantage of an erasure coded system over a replication-
based system is that it can offer much better reliability for the same storage
efficiency, or much higher storage efficiency for the same reliability. The ad-
vantage of a replication-based system over an erasure coded system is in per-
formance. Erasure coded systems typically offer only one copy of the user data
whereas replication-based systems offer r copies. Furthermore, an update of
any block of user data in an erasure coded system will require reading of the
existing codeword corresponding to that block, updating that codeword and
writing the codeword back to the system. In contrast, in a replication-based
system, an update of any piece of user data just requires overwriting the ex-
isting replicas of that data in the system and does not require any additional
reads or processing.

6.2 Codeword Reconstruction

When storage nodes fail, codewords lose some of their symbols and this leads
to a reduction in data redundancy. The system attempts to maintain the re-
dundancy of the system by reconstructing the lost codeword symbols using the
surviving symbols of the affected codewords. For a system using an (l,m)-MDS
code for redundancy, a simple way to reconstruct a codeword that has lost up
to m − l symbols is to read any of its l symbols, decode the original l user
data blocks, re-encode these l user data blocks using the (l,m)-MDS code, and
recover the lost codeword symbols. As an alternative to this method of recon-
struction, other methods, based on regenerating codes, have been proposed as
a solution to minimize the amount of data transferred over the storage network
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during reconstruction [19, 20]. Although regenerating codes help in reducing
the amount of network reconstruction traffic, the proposed reconstruction pro-
cess relies on being able to read considerably larger amounts of data from each
node and processing that data before transferring it to other nodes over the
network. When sufficient network rebuild bandwidth is available, the speed
of this reconstruction process is determined completely by the amount of data
to be read from each node. From a data reliability point of view, reading
larger amounts of data and the resulting slower reconstruction process can
significantly degrade the reliability of the system. Therefore, in this thesis, we
only consider the simple way of reconstruction, that is, reading any l symbols
of a codeword, decoding the original l user data blocks, re-encoding these l
user data blocks using the (l,m)-MDS code, and recovering the lost codeword
symbols.

The reconstruction process takes a finite amount of time, which depends on
the amount of data to read, the time taken for decoding and re-encoding this
data, and the amount of data to write. Typically the amount of time taken
for decoding and re-encoding this data is much smaller than the time taken
to read the required data and write the re-encoded data. It is assumed that
the decoding and re-encoding of data is done in a streaming fashion, that is,
as the data is being read, the decoding and re-encoding is assumed to be done
on-the-fly which converts a stream of input data to a stream of output data.
This implies that the time taken for the reconstruction is equal to the time
taken to stream the input and output data. As this streaming time is a non-
zero quantity, there exists a non-zero probability of further node failures within
this reconstruction time period which may result in further loss of redundancy.
Due to this probability, eventually, the system loses m − l + 1 symbols or
more of some codewords, thereby rendering these codewords undecodeable
and resulting in irrecoverable data loss. Similar to replication-based systems,
we wish to analyze the data reliability of replication-based systems in terms
of its mean time to data loss (MTTDL) and show how different codeword
placement schemes and system parameters affect the system MTTDL. To do
this, we make use of the relation (3.14) between MTTDL and the probability
of data loss during rebuild, PDL, namely,

MTTDL ≈ 1

nλPDL

,

which is a good approximation for real-world systems with generally reliable
storage nodes (see Section 3.2). Note that this relation was derived without
assuming any specific redundancy scheme or data placement. In addition, as
noted in Remark 3.1, this is a reasonable approximation for real-world data
storage systems.

Just like in the case of replication-based systems, the estimation of PDL is a
non-trivial problem as the system can go through a complex sequence of node
failures and rebuilds during the rebuild mode. Therefore, we approximate PDL

by the probability of the shortest path to data loss in rebuild mode and show
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that this approximation holds good for generally reliable nodes whose mean
times to failure are much larger than their mean times to rebuild.

6.3 Estimation of the Probability of Data Loss

during Rebuild

This section shows how the complex sequence of failure and rebuild events
following a first-node failure, that is, a node failure that causes a transition of
the system from fully-operational mode to the rebuild mode, is handled to be
able to estimate the probability of data loss before all lost replicas are restored,
namely, PDL.

The general idea behind the estimation of PDL is as follows. We model the
reliability behavior of the system using exposure levels that range from zero to
m − l + 1. Exposure level zero corresponds to a system where all codewords
have all their symbols intact, whereas exposure level m− l+ 1 corresponds to
a system where some codewords have lost m− l+1 symbols and are therefore
undecodeable. In other words, the system starts at exposure level zero and
eventually ends up in exposure level m− l+1, which corresponds to irrecover-
able data loss. Rebuild processes cause the system to go down exposure levels
whereas node failures may, depending on the codeword placement, cause the
system to go up exposure levels. The probability PDL is then equivalent to the
probability that, once the system enters exposure level one, the system ends
up in exposure level m − l + 1 before returning to exposure level zero. It is
extremely non-trivial to evaluate this probability as there are infinitely many
complex paths through which the system can traverse these exposure levels.
So we approximate this probability, PDL, of all possible paths to data loss by
the probability of the direct path to data loss, namely, the path from exposure
level one to two, two to three, and so on until m − l + 1. We show that such
an approximation holds good for systems with generally reliable nodes (that
is, nodes whose mean times to failure are much larger than their mean times
to rebuild) in the sense that the relative error in the approximation tends to
zero as the ratio of the mean time to rebuild to the mean time to failure tends
to zero. However, even the computation of the probability of this direct path
is quite involved. This is because, the probability of transition from one expo-
sure level to the next not only depends upon the current exposure level, but
also on how the system arrived there in terms of how much critical data needs
to be rebuilt. So we consider all possible sample direct paths from exposure
level zero to m − l + 1, compute their probabilities, and sum them up. This
gives the probability of direct path to data loss which is then used as a good
approximation for PDL.
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6.3.1 Exposure Levels

Consider an erasure coded storage system with an (l,m)-MDS code. Let

r̃ := m− l + 1. (6.1)

We model the system as evolving from one exposure level to another as nodes
fail and rebuilds complete. At time t ≥ 0, let Dj(t) be the amount of user
data that have lost j symbols of their corresponding codewords, for 0 ≤ j ≤ r̃.
The system is said to be in exposure level e at time t, 0 ≤ e ≤ r̃, if

e = max
Dj(t)>0

j. (6.2)

In other words, the system is in exposure level e if there exists some data with
only r̃ − e symbols of their corresponding codewords and no data with fewer
than r̃ − e symbols of their corresponding codewords in the system, that is,
De(t) > 0, and Dj(t) = 0 for all j > e. At t = 0, Dj(0) = 0 for all j > 0 and
D0(0) is the total amount of user data stored in the system, which according
to the parameters in Table 2.1, is equal to nc/(m/l). Node failures and rebuild
processes cause the values of D1(t), · · · , Dr̃(t) and the exposure level of the
system to change over time. Data loss occurs when some data have lost r̃
codeword symbols, that is, when Dr̃(t) > 0 for some time t. The smallest t for
which Dr̃(t) > 0 is the first time the system ends up in data loss and is simply
referred to as the time to data loss, TDL:

TDL = min
Dr̃(t)>0

t. (6.3)

The time to data loss is a random variable and our goal is to estimate its mean,
MTTDL.

6.3.2 Direct Path Approximation

A path to data loss following a first-node-failure event is a sequence of exposure
level transitions that begins in exposure level 1 and ends in exposure level r̃
(data loss) without going back to exposure level 0, that is, for some j ≥ r, a
sequence of j−1 exposure level transitions e1 → e2 → · · · → ej such that e1 =
1, ej = r, e2, · · · , ej−1 ∈ {1, · · · , r̃−1}, and |ei−ei−1| = 1, ∀ i = 2, · · · , j. Note
that this collection of paths excludes visits to exposure level 0 and therefore
only consists of all paths to data loss before all lost replicas are restored. To
estimate PDL, we need to estimate the probability of the union of all such
paths to data loss following a first-node failure. As the set of events that can
occur between exposure level 1 and exposure level r̃ is complex, estimating
PDL is a non-trivial problem.

To circumvent this problem, we approximate PDL by the probability of the
direct path to data loss, that is, the probability of the path 1 → 2 → · · · → r̃.
It is shown in Appendix B that the probability of the direct path approximates
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well the probability of all paths, namely, PDL, for a system with generally
reliable nodes for which (2.10) holds. Thus, if we denote the probability of
direct path to data loss by PDL,direct, then

PDL ≈ PDL,direct. (6.4)

The proof of the above approximation relies only on the fact that the probabil-
ities of transitions to higher exposure levels are extremely small, which is the
case for systems with generally reliable nodes. The proof also does not make
any assumptions on the failure and rebuild time distributions. Additionally,
it is seen from the analysis in Appendix B that the approximation is quite
good in the sense that the relative error of approximation tends to zero as the
ratio, λ/µ, of mean time to rebuild to the mean time to failure tends to zero.
In real-world storage systems, this ratio is observed to be generally small and
therefore this is a reasonable approximation. The approximation is also seen
to be quite good over a wide range of parameters using simulations which do
not make this approximation.

6.3.3 Probability of the Direct Path to Data Loss

Consider the direct path to data loss, that is, the path 1 → 2 → · · · → r̃
through the exposure levels. At each exposure level, the intelligent rebuild
process attempts to rebuild the most-exposed data, that is, the data with the
least number of codeword symbols left (see Section 2.6). Let the rebuild times
of the most-exposed data at each exposure level in this path be denoted by
Re, e = 1, · · · , r̃ − 1. If no additional node failures occur during a rebuild in
exposure level e that cause the system to go to exposure level e+1, then after
a time period of Re, the system will return to exposure level e− 1. Therefore,
determining the rebuild times at each exposure level is a key step in estimating
the probability of the direct path to data loss.

The rebuild times at each exposure level are random variables that depend
on the amount of most-exposed data to be rebuilt at that exposure level and
the data placement scheme. The amount of most-exposed data to be rebuilt at
a given exposure level, e, depends on when a node failure occurred during the
rebuild in the previous exposure level, e − 1, that caused the system to enter
exposure level e. Let us illustrate this with a simple example: consider a system
using an (l,m)-MDS code with n = 2m storage nodes. The 2m storage nodes
are divided into two clusters of m nodes each. The codewords of length m are
stored (or striped) across the m nodes of either one cluster or the other. In
other words, there is no codeword which is striped across nodes of two different
clusters. In our model, this is an erasure coded system with an (l,m)-MDS
code and clustered codeword placement. The system is at exposure level zero
until one of the nodes fails, at which point, the system enters exposure level
one. As the amount of data stored in the failed node was c, it follows that the
codewords corresponding to this c amount of data have lost one symbol. As
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described in Section 6.2, the codeword reconstruction process involves reading
l of the surviving symbols of these affected codewords, decoding the user data
corresponding to these codewords, re-encoding the lost symbols, and writing
them to a new replacement node. As the processing during reconstruction,
that is, the decoding and re-encoding, is assumed to be done on the fly, the
reconstruction time depends on the time required to read the required data
from the surviving nodes and write the reconstructed data to the new node.
As described in Section 2.6, in clustered placement, this data is assumed to be
read from any l of the m − 1 surviving nodes of the cluster. The amount of
data to be reconstructed is c and therefore, the total amount of data to be read
is lc and the total amount of data to be written is c. However, due to the fact
that the lc amount of data is read from l nodes in parallel with c amount from
each node, and the fact that the average amount of time required to read (or
write) c amount of data from (or to) a node is 1/µ, it takes an average of 1/µ
amount of time for this reconstruction process to complete. In other words,
the rebuild time R1 has mean 1/µ. As the nodes are generally reliable, most
of the time, no additional nodes failures occur during this rebuild period and
the system returns to exposure level zero. However, with a small probability,
an additional node failure occurs. This node could either belong to the cluster
being rebuilt, in which case the system enters exposure level two as some of
the data lose a second codeword symbol, or the other cluster, in which case
the system stays in the same exposure level as no data have lost more than one
codeword symbol. To compute the probability of the direct path to data loss,
we are interested in the probability of a node failure that causes the system to
enter exposure level two. Suppose that this second node failure occurs when
a fraction α of the data corresponding to the node that failed first is not yet
rebuilt. As the two failed nodes shared codewords of all their data, the amount
of data that loses a second codeword symbol when the second failure occurs
is αc. This data is now the most-exposed and, and by similar arguments as
above, it would now take an average of α/µ amount of time to rebuild this
most-exposed data. In other words, the rebuild time R2 has a conditional
mean α/µ. We will now explicitly describe how one can estimate the rebuild
times at each exposure level.

Let te, e = 2, · · · , r̃, be the times of transitions from exposure level e−1 to
e following a first-node failure, that is, a node failure that causes the system to
enter rebuild mode from the fully-operational mode. Let ñe be the number of
nodes in exposure level e whose failure before the rebuild of most-exposed data
causes an exposure level transition to level e + 1. For example, in clustered
placement scheme, the failure of any of the surviving nodes of the cluster being
rebuilt causes some data to lose an additional codeword symbol thereby leading
the system to the next exposure level. Therefore, for clustered placement,
ñe = r̃− e as there are exactly r̃− e surviving nodes in a cluster being rebuilt
when the system is in exposure level e. Now, let

Fe := min
i∈{1,··· ,ñe−1}

E
(i)
te−1

, e = 2, · · · , r̃, (6.5)
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denote the time taken for a node failure to occur that can cause the system to
enter exposure level e. Note that E

(i)
te−1

, as defined in Section 3.2.1, denotes the
time period from te−1 until the next failure of node i. Therefore, Fe denotes
the time until the first failure among the ñe−1 nodes that causes the system to
enter exposure level e.

At exposure level e, let αe be the fraction of the rebuild time Re still left
when a node failure occurs causing an exposure level transition, that is, let

αe :=
Re − Fe+1

Re

, e = 1, · · · , r̃ − 2. (6.6)

In Appendix C, it is shown that αe is uniformly distributed between zero and
one, that is,

αe ∼ U(0, 1), e = 1, · · · , r̃ − 2. (6.7)

Now, consider a direct path to data loss with Re = τe, e = 1, · · · , r̃ − 1,
and αe = ae, e = 1, · · · , r̃ − 2.1 Denote the vector (τ1, · · · , τr̃−1) by ~τ and
(a1, · · · , ar̃−2) by ~a for notational convenience. Then, the probability of this
direct path, denoted by PDL,direct(~τ ,~a), is given by

PDL,direct(~τ ,~a) = Pr{R1 = τ1, F2 < R1, α1 = a1, R2 = τ2, F3 < R2,

· · · , αr̃−2 = ar̃−2, Rr̃−1 = τr̃−1, Fr̃ < Rr̃−1}. (6.8)

In the above expression, the events Fe < Re−1 represent the exposure level
transitions from e − 1 to e. Thus, the above expression gives the probability
that the system will take this particular direct path to data loss with Re = τe
and αe = ae. Expanding (6.8) by conditioning, we get

PDL,direct(~τ ,~a) = Pr{R1 = τ1} × Pr{F2 < R1|R1 = τ1}
× Pr{α1 = a1|R1 = τ1, F2 < R1}
× Pr{R2 = τ2|R1 = τ1, F2 < R1, α1 = a1}
× Pr{F3 < R2|R1 = τ1, F2 < R1, α1 = a1, R2 = τ2}
· · · × Pr{Fr̃ < Rr̃−1|R1 = τ1, · · · , Rr̃−1 = τr̃−1}. (6.9)

The first term in the above expansion is the probability Pr{R1 = τ1}. Denote
the mean of R1 by 1/µ1, that is,

1

µ1

:= E[R1]. (6.10)

The actual value of the mean will depend on the underlying data placement
and will be discussed further in the later sections. Based on the rebuild model

1More strictly, we consider a direct path to data loss with τe < Re ≤ τe + δτe, e =
1, · · · , r̃−1, and ae < αe ≤ δae, e = 1, · · · , r̃−2, where δτe and δae are positive infinitesimal
quantities, but we leave this out for notational convenience.
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described in Section 2.6, it follows that R1 is distributed according to some
distribution Gµ1 that satisfies (2.11):

R1 ∼ Gµ1 . (6.11)

Therefore, the first term in (6.9) reduces to

Pr{R1 = τ1} = gµ1(τ1)δτ1, (6.12)

where δτ1 denotes an infinitesimal increment in τ1. The remaining terms in
the expression for PDL,direct(~τ ,~a) in (6.9) fall into three types:

Type A: Pr{Fe < Re−1|R1 = τ1, · · · , Re−1 = τe−1}, (6.13)

Type B: Pr{αe = ae|R1 = τ1, · · · , Re = τe, Fe+1 < Re}, (6.14)

Type C: Pr{Re = τe|R1 = τ1, · · · , Re−1 = τe−1, Fe < Re−1, αe−1 = ae−1}.
(6.15)

As shown in Section 6.3.3, each of these types of expressions can be further
simplified as follows.

Expressions of Type A

Expressions of the form (6.13), which denote the conditional probability of
transition from exposure level e− 1 to e, can be reduced to

Pr{Fe < Re−1|R1 = τ1, · · · , Re−1 = τe−1} ≈ ñe−1λτe−1, (6.16)

for e = 2, · · · , r̃, where the approximation holds good for systems with gener-
ally reliable node satisfying (2.10) and (2.11).

Remark 6.1. For real-world storage systems, which are made of generally
reliable nodes, the node rebuild times τe−1 (which are typically of the order of
a few hours) are much smaller compared to the mean time to node failure 1/λ
(which are typically of the order of a few years). Therefore, the conditional
probabilities of transition to higher exposure levels, represented by (6.16), are
extremely small for such systems.

Expressions of Type B

Type B terms of the form (6.14), which denote the conditional probability that
the fraction of rebuild time, Re, still left when an exposure level transition from
e to e+ 1 occurred is equal to ae, can be reduced to

Pr{αe = ae|R1 = τ1, · · · , Re = τe, Fe+1 < Re} ≈ δae, (6.17)

for e = 1, · · · , r̃ − 2, where the approximation holds good for systems with
generally reliable node satisfying (2.10) and (2.11). Here, δae denotes an in-
finitesimal increment of ae.
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Expressions of Type C

Type C expressions of the form (6.15), which denote the conditional probability
that the rebuild time in exposure level e is equal to τe, reduce to

Pr{Re = τe|R1 = τ1, · · · , Re−1 = τe−1, Fe < Re−1, αe−1 = ae−1}

=

{
gµe

(τe)δτe under model A,
δ(τe − 1/µe)δτe under model B,

(6.18)

for e = 2, · · · , r̃ − 1. Here, gµe
(·) denotes the probability density function

corresponding to the distribution Gµe
, δ(· − 1/µe) denotes the Dirac delta

function with a spike at 1/µe, δτe denotes an infinitesimal increment of τe, and
models A and B describe the distribution of Re given Re−1 and αe−1 as shown
below:

Model A: Re|Re−1, αe−1 ∼ Gµe
, (6.19)

Model B: Re|Re−1, αe−1 =
1

µe

. (6.20)

In model A, we assume that, following a node failure, the system has to recon-
figure its rebuild process entirely to rebuild the most-exposed data blocks in the
new exposure level. This model may be applicable for a clustered placement
scheme, where one of the l nodes from which data was being rebuilt failed and
hence the system has to rebuild from another set of l nodes in the cluster. If l is
small, this may involve a significant reconfiguration of the rebuild process. In
model B, we assume that, following a node failure, the system has to do little
or no reconfiguration of the rebuild process to rebuild the most-exposed data
in the new exposure level. This is the case, for instance, in a clustered place-
ment scheme where the newly failed node is not among the set of l nodes from
which data is being rebuilt. This is also the case in a declustered placement
scheme, where the rebuild was being done from all nodes, and therefore, in a
large system, the failure of one node does not significantly affect the rebuild
process.

Probability of a Sample Direct Path

Substituting (6.12), (6.16), (6.17), and (6.18) in (6.9), the probability of a
sample direct path with Re = τe, e = 1, · · · , r̃−1, and αe = ae,e = 1, · · · , r̃−2,
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reduces to

PDL,direct(~τ ,~a) ≈ gµ1(τ1)δτ1 ×
(

r̃∏

e=2

ñe−1λτe−1

)
×
(

r̃−1∏

e′=1

δae′

)

×
{∏r̃−2

e′′=2 gµe′′
(τe′′)δτe′′ (model A)∏r̃−2

e′′=2 δ(τe′′ − 1/µe′′)δτe′′ (model B)

= λr̃−1 × ñ1 · · · ñr̃−1 × τ1 · · · τr̃−1 × gµ1(τ1)

×δa1 · · · δar̃−2 × δτ1 · · · δτr̃−1

×
{
gµ2(τ2) · · · gµr̃−1

(τr̃−1) (model A)

δ
(
τ2 − 1

µ2

)
· · · δ

(
τr̃−1 − 1

µr̃−1

)
(model B)

(6.21)

Probability of Data Loss during Rebuild

As mentioned in Section 6.3.2, the probability of direct path to data loss,
denoted by PDL,direct, is a good approximation for the probability of data loss
during rebuild, PDL:

PDL ≈ PDL,direct. (6.22)

Also, the probability of the direct path to data loss, PDL,direct, is the summation
of the probabilities, PDL,direct(~τ ,~a), of all possible sample direct paths. As the
infinitesimal increments in (6.21) tend to zero, the summation becomes an
integral. Therefore, the probability of all possible direct paths to data loss,
PDL,direct, and hence, PDl, becomes

PDL ≈ λr̃−1 × ñ1 · · · ñr̃−1

×
∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

τ1 · · · τr̃−1gµ1(τ1) · · · gµr̃−1
(τr̃−1)d~ad~τ

(model A) (6.23)

PDL ≈ λr̃−1 × ñ1 · · · ñr̃−1

×
∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

(
τ1 · · · τr̃−1gµ1(τ1)

× δ

(
τ2 −

1

µ2

)
· · · δ

(
τr̃−1 −

1

µr̃−1

)
d~ad~τ

)

(model B). (6.24)

Here, the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃ − 1, and from 0 to 1
for ae, e = 1, · · · , r̃ − 2.
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Remark 6.2. The approximations in the expressions (6.23) and (6.24) for
PDL hold good for systems with generally reliable nodes that satisfy (2.10) and
(2.11). The approximation is good in the sense that the relative error tends
to zero as the ratio λ/µ of the mean time to node failure to the mean time
to node rebuild tends to zero. The validity of the approximation has also been
established for a wide rage of parameters using simulation.

Remark 6.3. The derivation of the expressions (6.23) and (6.24) for PDL is
quite general in the sense that it is applicable to all symmetric data placement
schemes and to both replication-based systems and erasure-coded systems. It is
also applicable to all node failure and rebuild distributions that satisfy (2.10)
and (2.11). As can be observed from the expressions (6.23) and (6.24), the
only unknowns in evaluating PDL are the means µe, e = 1, · · · , r̃ − 1, and the
number of nodes whose failure can cause a transition to the next exposure level,
ñe, e = 1, · · · , r̃ − 1. These quantities depend on the particular type of data
placement or redundancy scheme used.

Remark 6.4. Replication-based storage systems with replication factor r are
a special case of erasure coded systems with an (l,m)-MDS code, where the
parameters l and m are equal to 1 and r, respectively. This can also be observed
by comparing the expressions (4.44) and (4.45) for the PDL of replication-based
systems with the expressions (6.23) and (6.24) for the PDL of systems using
MDS codes.

Remark 6.5. It is clear from (6.23) and (6.24) that PDL is invariant to the
class of failure distributions satisfying (2.10) and (2.11) and only depends on
the mean time to failure, 1/λ. Furthermore, by the relation (3.14), the MTTDL
is also invariant to this class of failure distributions. As this class of distribu-
tions includes real-world empirical distributions, such as the Weibull distribu-
tion, as well as the theoretically amenable exponential distribution, the benefit
is two-fold. The fact that real-world failure distributions belongs to this class
implies that these results are directly relevant to practical storage systems. On
the other hand, the presence of the exponential distribution in this class means
that MTTDL results obtained in the literature assuming unrealistic exponential
distributions may be applicable to real-world storage systems as well.

6.4 Effect of Codeword Placement on Reliability

In this section, we consider different codeword placement schemes as discussed
in Section 2.4. We would like to estimate their reliability in terms of their
MTTDL using the relations (3.14), (6.23), and (6.24), and understand how
codeword placement affects data reliability. To use the expressions (6.23) and
(6.24) for PDL, we need to compute the conditional means of rebuild times
in each exposure level, µe, e = 1, · · · , r̃ − 1, and the number of nodes whose
failure can cause a transition to the next exposure level, ñe, e = 1, · · · , r̃ − 1.
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The values of these quantities depend on the underlying codeword placement
and the nature of the rebuild process used.

Notation: Here, we introduce a few new notations and repeat the notations
used in the previous section for the sake of clarity. Suppose that a first-node
failure occurs at time t1 causing the system to go from the fully-operational
mode to exposure level 1 in the rebuild mode. Let te, e = 2, · · · , r̃, denote the
times of transitions from exposure level e−1 to e. Let the rebuild times of the
most-exposed data at each exposure level in this path be Re, e = 1, · · · , r̃− 1,
with conditional means 1/µe, e = 1, · · · , r̃ − 1. Let ñe, e = 1, · · · , r̃ − 1, be
the number of nodes whose failure during rebuild can cause a transition to the
next higher exposure level. Let De(t), e = 0, · · · , r̃, denote the amount of user
data that have lost e of their codeword symbols at time t. Around the times
of exposure level transitions, te, let De(t

−
e ) and De(te) denote the amounts of

user data that have lost e of their codeword symbols just before and just after
time te, respectively. In addition, let Se, e = 1, · · · , r̃ − 1, denote the average
speed (or rate) of rebuild in exposure level e. Also, let the kth raw moment of
the rebuild distribution Gµ with mean 1/µ be denoted by Mk(Gµ), that is,

Mk(Gµ) :=

∫

t

tkdGµ(t), for k = 1, 2, · · · . (6.25)

By definition,

M1(Gµ) =
1

µ
. (6.26)

Note that, by Jensen’s inequality,

Mk
1 (Gµ) ≤ Mk(Gµ), for k = 1, 2, · · · , (6.27)

that is, the kth power of the mean of Gµ is lesser than or equal to the kth
raw moment of Gµ. Lastly, the superscripts ’clus.’ and ’declus.’ will be used
to refer to quantities specific to clustered and declustered placement schemes,
respectively.

6.4.1 Clustered Codeword Placement

The goal of this section is to estimate the reliability of a clustered codeword
placement scheme in terms of its MTTDL. To achieve this goal, we first com-
pute the conditional means of rebuild times in each exposure level, µclus.

e ,
e = 1, · · · , r̃− 1, and the number of nodes whose failure can cause a transition
to the next exposure level, ñclus.

e , e = 1, · · · , r̃ − 1. Using these quantities
and expressions (6.23) and (6.24), we can compute the probability of data loss
during rebuild, P clus.

DL . The mean time to data loss, MTTDLclus., can then be
obtained by using the relation (3.14).
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Clustered Codeword Placement: Exposure Level 1

Following a first-node failure at t1, the codewords of some cluster lost one of
their symbols. Therefore, the system enters exposure level 1 and the rebuild
process begins. The amount of data to be rebuilt at this exposure level is equal
to the capacity of the failed node, c, that is,

Dclus.
1 (t1) = c. (6.28)

As described in Sections 2.6 and 6.2, the rebuild process in a system using an
(l,m)-MDS code with clustered codeword placement involves reading l symbols
of the codewords corresponding to the data on the failed node from l of the
otherm−1 surviving nodes of the affected cluster, computing the lost codeword
symbols, and writing them to a new spare node. As the data is being read
in parallel from l nodes at an average bandwidth of cµ from each node, and
written to a new node at an average bandwidth of cµ, the average rate (or
speed) of rebuild in exposure level 1 is

Sclus.
1 = cµ. (6.29)

The average time required for this rebuild, 1/µclus.
1 , is obtained by dividing the

amount of data to be rebuilt, given by (6.28), by the average speed of rebuild,
given by (6.29). Thus,

1

µclus.
1

= E[Rclus.
1 ] =

Dclus.
1 (t1)

Sclus.
1

=
1

µ
. (6.30)

According to our model, the rebuild time, Rclus.
1 , is distributed according to

some distribution Gµclus.
1

with mean 1/µclus.
1 that satisfies (2.11), that is,

Rclus.
1 ∼ Gµclus.

1
= Gµ. (6.31)

There are m − 1 remaining nodes in the cluster of the failed node. Due to
the nature of clustered codeword placement, the failure of any of these nodes
during the rebuild period Rclus.

1 will cause the system to enter exposure level
2, whereas the failure of nodes belonging to any other cluster does not cause
the system to enter exposure level 2. Therefore, the number of nodes whose
failure during rebuild can cause a transition to the next exposure level is given
by

ñclus.
1 = m− 1. (6.32)

When one of the ñclus.
1 nodes fail before rebuild, the system enters exposure

level 2.
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Clustered Codeword Placement: Exposure Level 2

The system enters exposure level 2 from exposure level 1 because one of the
ñclus.
1 nodes fails during the rebuild period Rclus.

1 . Consider an instance of the
rebuild period,

Rclus.
1 = τ1, (6.33)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from 1 to 2 occurred,

α1 = a1. (6.34)

The remaining time to complete rebuild at exposure level 1 when the system
entered exposure level 2 is the product of Rclus.

1 and α1, namely, a1τ1. As
the average speed of rebuild in exposure level 1 is Sclus.

1 , it follows that the
amount of the most-exposed data not rebuilt when the exposure level transition
occurred, Dclus.

1 (t−2 ), is given by

Dclus.
1 (t−2 ) = α1R

clus.
1 Sclus.

1 = a1τ1cµ, (6.35)

which is essentially the product of (6.29), (6.33), and (6.34). At the time of
transition from exposure level 1 to 2, t2, all this D

clus.
1 (t−2 ) amount of data loses

its second codeword symbol and is thus the most-exposed data in exposure level
2. This is due to the nature of the clustered codeword placement scheme in
which all nodes of a cluster store codewords of the same data. Therefore, the
amount of most-exposed data in exposure level 2, Dclus.

2 (t2), is given by

Dclus.
2 (t2) = Dclus.

1 (t−2 ) = a1τ1cµ. (6.36)

The average speed of rebuild remains unchanged as the rebuild process still
involves reading data from l of the remainingm−2 nodes of the affected cluster
at an average bandwidth of cµ from each node, computing the lost codeword
symbols on-the-fly, and writing them to a spare node at an average bandwidth
of cµ. Therefore,

Sclus.
2 = cµ. (6.37)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µclus.

2 , of the rebuild time in the
second exposure level, Rclus.

2 , is obtained by dividing (6.36) by (6.37), that is,

1

µclus.
2

= E[Rclus.
2 |Rclus.

1 = τ1, α1 = a1] =
Dclus.

2 (t2)

Sclus.
2

= a1τ1. (6.38)

There are now m − 2 remaining nodes in the cluster of the failed node. The
failure of any of these nodes during the rebuild time Rclus.

2 will cause the system
to enter exposure level 3. Therefore, the number of nodes whose failure during
rebuild can cause a transition to the next exposure level is given by

ñclus.
2 = m− 2. (6.39)
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Clustered Codeword Placement: Exposure Level e

The computation of the conditional mean 1/µclus.
e and the number of nodes

ñclus.
e for a general exposure level e = 2, · · · , r̃−1, is similar to the computation

of these quantities for exposure level 2 as described above. Firstly, we note that
the average speed of rebuild is unchanged in each exposure level for clustered
placement, that is,

Sclus.
e = cµ, e = 1, · · · , r̃ − 1. (6.40)

This is due to the fact that the rebuild process always involves reading data
from l of the affected cluster at an average bandwidth of cµ from each node,
computing the lost codeword symbols on-the-fly, and writing them to a spare
node at an average bandwidth of cµ.

Now, the system enters exposure level e from exposure level e− 1 because
one of the ñclus.

e−1 nodes fails during the rebuild period Rclus.
e−1 . Consider an

instance of the rebuild period,

Rclus.
e−1 = τe−1, (6.41)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from e− 1 to e occurred,

αe−1 = ae−1. (6.42)

The remaining time to complete rebuild at exposure level e−1 when the system
entered exposure level e is the product of Rclus.

e−1 and αe−1, namely, ae−1τe−1.
As the average speed of rebuild in exposure level e − 1 is Sclus.

e−1 , it follows
that the amount of the most-exposed data not rebuilt when the exposure level
transition occurred, Dclus.

e−1 (t
−
e ), is given by

Dclus.
e−1 (t

−
e ) = αe−1R

clus.
e−1 S

clus.
e−1 = ae−1τe−1cµ, (6.43)

which is essentially the product of (6.40), (6.41), and (6.42). At the time of
transition from exposure level e− 1 to e, te, all this D

clus.
e−1 (t

−
e ) amount of data

loses its eth codeword symbol and is thus the most-exposed data in exposure
level e. This is due to the nature of the clustered codeword placement scheme.
Therefore, the amount of most-exposed data in exposure level e, Dclus.

e (te), is
given by

Dclus.
e (te) = Dclus.

e (t−e ) = ae−1τe−1cµ. (6.44)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µclus.

e , of the rebuild time in the
eth exposure level, Rclus.

e , is obtained by dividing (6.44) by (6.40), that is,

1

µclus.
e

= E[Rclus.
e |Rclus.

e−1 = τe−1, αe−1 = ae−1] =
Dclus.

e (te)

Sclus.
e

= ae−1τe−1. (6.45)
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There are now m−e remaining nodes in the cluster under rebuild. The failure
of any of these nodes during the rebuild time Rclus.

e will cause the system to
enter exposure level e+1. Therefore, the number of nodes whose failure during
rebuild can cause a transition to the next exposure level is given by

ñclus.
e = m− e. (6.46)

Clustered Codeword Placement: MTTDL under Model A

Recall that, under model A, following each exposure level transition, the sys-
tem is assumed to reconfigure its rebuild process entirely to rebuild the most-
exposed data blocks in the new exposure level. This model may be applicable
for a clustered placement scheme, where one of the l nodes from which data
was being rebuilt failed and hence the system has to rebuild from another
node set of l nodes in the cluster. If l is small, this may involve a significant
reconfiguration of the rebuild process. This implies that the rebuild time in
the new exposure level is a random variable, and only its mean depends on
the rebuild time and the fraction of most-exposed data not rebuilt in the pre-
vious exposure level. Given this mean, the rebuild time in the new exposure
level is independent of the rebuild time in the previous exposure level. Having
computed the key quantities 1/µclus.

e and ñclus.
e for e = 1, · · · , r̃ − 1, we are

now ready to compute P clus.
DL using the expression (6.23) for model A, and then

MTTDLclus. using (3.14).

By substituting the values of 1/µclus.
e and ñclus.

e from (6.30), (6.45), and
(6.46) into (6.23), we obtain

P clus.
DL ≈ λr̃−1 × (m− 1) · · · (m− r̃ + 1)

×
∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

τ1 · · · τr̃−1gµ(τ1) · · · g 1
ar̃−2τr̃−2

(τr̃−1)d~ad~τ

(model A) (6.47)

As in (6.23) the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃− 1, and from 0
to 1 for ae, e = 1, · · · , r̃ − 2.

(l,m)-MDS codes with m − l ≤ 2: The expression (6.47) for P clus.
DL under

model A cannot, in general, be further simplified without considering a par-
ticular family of rebuild distributions Gµ. However, it is worth noting that,
for r̃ ≤ 3, a closed form expression for P clus.

DL , and hence MTTDLclus., can be
obtained under model A. By definition (6.1), this corresponds to the case when
m− l ≤ 2. This is illustrated by deriving the closed form expression for r̃ = 3,
or equivalently, m − l = 2, by substituting r̃ = 3 in (6.47) and simplifying as
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follows.

P clus.
DL ≈ (m− 1)(m− 2)λ2

∫ ∞

τ1=0

∫ ∞

τ2=0

∫ 1

a1=0

τ1τ2gµ(τ1)g 1
a1τ1

(τ2)da1dτ2dτ1

= (m− 1)(m− 2)λ2

∫ ∞

τ1=0

τ1gµ(τ1)

∫ 1

a1=0

∫ ∞

τ2=0

τ2g 1
a1τ1

(τ2)dτ2da1dτ1

for m− l = 2 (model A). (6.48)

Noting that
∫ ∞

τ2=0

τ2g 1
a1τ1

(τ2)dτ2 = a1τ1, (6.49)

we get

P clus.
DL ≈ (m− 1)(m− 2)λ2

∫ ∞

τ1=0

τ 21 gµ(τ1)

∫ 1

a1=0

a1da1dτ1 (6.50)

=
1

2
(m− 1)(m− 2)λ2

∫ ∞

τ1=0

τ 21 gµ(τ1)dτ1 (6.51)

=
1

2
(m− 1)(m− 2)λ2M2(Gµ) for m− l = 2 (model A),(6.52)

where M2(Gµ), as defined in (6.25), denotes the second raw moment of the
rebuild distribution Gµ. The expression for MTTDLclus. then follows from
(3.14):

MTTDLclus. ≈ 1

nλP clus.
DL

(6.53)

≈ 2

n(m− 1)(m− 2)λ3M2(Gµ)
(6.54)

=
µ2

nλ3

2

(m− 1)(m− 2)

M2
1 (Gµ)

M2(Gµ)
for m− l = 2 (model A).

(6.55)

Here, the last step is obtained by multiplying and dividing by square of the
mean of the rebuild time distribution Gµ, M2

1 (Gµ), which is also equal to
1/µ2. This is done to show the effect of the rebuild distribution on the
MTTDL. For deterministic rebuild times, the second raw moment, M2(Gµ),
is equal to the square of the first raw moment, M2

1 (Gµ), and therefore, the
term M2

1 (Gµ)/M2(Gµ) evaluates to one. However, if the rebuild times are ran-
dom, the second raw moment is always greater than the square of the first
raw moment by Jensen’s inequality, and therefore, the term M2

1 (Gµ)/M2(Gµ)
is smaller than one. The closed form expression for m− l = 1, or equivalently,
r̃ = 2, can be derived similarly and is given by

MTTDLclus. ≈ µ

nλ2

1

(m− 1)
for m− l = 1 (model A). (6.56)
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(l,m)-MDS codes with m−l > 2: For (l,m)-MDS codes with m−l > 2, or
equivalently, r̃ > 3, the evaluation of P clus.

Dl under model A involves computing
the expectations of functions involving higher raw moments of Gµ, which can-
not be done without considering a particular family of rebuild distributions.
However, given a particular family of rebuild distributions, the derivation of
MTTDL involves successively evaluating the integrals in (6.47) to compute
P clus.
DL , and then using (3.14) to obtain MTTDLclus..

Clustered Codeword Placement: MTTDL under Model B

In contrast to model A, we assume in model B that, following an exposure
level transition, the system has to do little or no reconfiguration of the rebuild
process to rebuild the most-exposed data in the new exposure level. This is
the case, for instance, in a clustered placement scheme where the newly failed
node is not in the set of l nodes from which data is being rebuilt. This is also
the case in a declustered placement scheme, where the rebuild is being done
from all nodes, and therefore, in a large system, the failure of one node does
not significantly affect the rebuild process. This implies that the rebuild time
in the new exposure level is completely determined by the rebuild time and
the fraction of most-exposed data not rebuilt in the previous exposure level.

By substituting the values of 1/µclus.
e and ñclus.

e from (6.30), (6.45), and
(6.46) into (6.24), we obtain

P clus.
DL ≈ λr̃−1 × (m− 1) · · · (m− r̃ − 1)

×
∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

(
τ1 · · · τr̃−1gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr̃−1 − ar̃−2τr̃−2) d~ad~τ

)

(model B). (6.57)

As in (6.24) the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃− 1, and from 0
to 1 for ae, e = 1, · · · , r̃ − 2. In contrast to model A, closed form expressions
in terms of the raw moments of the rebuild distribution Gµ can be obtained
for model B as follows. By changing the order of integrals in (6.57), we obtain

P clus.
DL ≈ λr̃−1 × (m− 1) · · · (m− r̃ − 1)

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−1

(
τ1 · · · τr̃−1gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr̃−1 − ar̃−2τr̃−2) dτr̃−1 · · · dτ1d~a
)
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= λr̃−1 × (m− 1) · · · (m− r̃ − 1)

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−2

(
τ1 · · · τ 2r̃−2ar̃−2gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr̃−2 − ar̃−3τr̃−3) dτr̃−2 · · · dτ1d~a
)

(6.58)

= λr̃−1 × (m− 1) · · · (m− r̃ − 1)

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−3

(
τ1 · · · τ 3r̃−3a

2
r̃−3ar̃−2gµ(τ1)

× δ (τ2 − a1τ1) · · · δ (τr̃−3 − ar̃−4τr̃−4) dτr̃−3 · · · dτ1d~a
)

(6.59)

...

= λr̃−1 × (m− 1) · · · (m− r̃ − 1)

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

τ r̃−1
1 ar̃−2

1 · · · a2r̃−3ar̃−2gµ(τ1)dτ1d~a

(model B). (6.60)

Here, steps (6.58)–(6.60) follow by successively integrating over τr̃−1, · · · , τ2, by
using the Dirac delta function’s property. Changing the order of the integrals
and integrating out a1, · · · , ar̃−2, we get

P clus.
DL ≈ λr̃−1 × (m− 1) · · · (m− r̃ − 1)×

∫

τ1

τ r̃−1
1 gµ(τ1)

1

(r̃ − 1)!
dτ1 (6.61)

= λr̃−1

(
m− 1

r̃ − 1

)
Mr̃−1(Gµ) (6.62)

= λm−l

(
m− 1

m− l

)
Mm−l(Gµ) (6.63)

= λm−l

(
m− 1

l − 1

)
Mm−l(Gµ) (model B) (6.64)

where Mm−l(Gµ), as defined in (6.25), denotes the (m − l)th raw moment of
the rebuild distribution Gµ. Here, we have substituted for r̃ from its definition
(6.1), that is, r̃ = m− l+1. The expression for MTTDLclus. then follows from
(3.14):

MTTDLclus. ≈ 1

nλP clus.
DL

(6.65)

≈ 1

nλm−l+1
(
m−1
l−1

)
Mm−l(Gµ)

(6.66)

=
µm−l

nλm−l+1

1(
m−1
l−1

)M
m−l
1 (Gµ)

Mm−l(Gµ)
(model B). (6.67)
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Here, the last step is obtained by multiplying and dividing by (m− l)th power
of the mean of the rebuild time distribution Gµ, Mm−l

1 (Gµ), which is also
equal to 1/µm−l. This is done to show the effect of the rebuild distribution
on the MTTDL. For deterministic rebuild times, the (m − l)th raw moment,
Mm−l(Gµ), is equal to the (m−l)th power of the first raw moment, Mm−l

1 (Gµ),
and therefore, the term Mm−l

1 (Gµ)/Mm−l(Gµ) evaluates to one. For random
rebuild times, by the Jensen’s inequality, the (m−l)th raw moment,Mm−l(Gµ),
is always greater than the (m− l)th power of the first raw moment, Mm−l

1 (Gµ),
and therefore, the term Mm−l

1 (Gµ)/Mm−l(Gµ) evaluates to less than one.
As an example, if Gµ is exponential, the expression for MTTDLclus. reduces

to the following:

MTTDLclus. ≈ µm−l

nλm−l+1

1(
m−1
l−1

) 1

(m− l)!
(6.68)

=
µm−l

nλm−l+1

(l − 1)!

(m− 1)!
when Gµ is exponential (model B).(6.69)

Remark 6.6. The expressions (6.55), (6.67), and (6.69) for the mean time to
data loss of a storage system with clustered codeword placement scheme under
both models A and B are seen to be invariant within the class of node failure
distributions that satisfy (2.10) and (2.11). In particular, the MTTDL only
depends on the mean of the times to node failure, 1/λ. As the conditions (2.10)
and (2.11) hold true for real-world storage nodes as well, these MTTDL results
are of practical significance.

Remark 6.7. The expressions (6.55), (6.67), and (6.69) for the mean time
to data loss of a storage system with clustered codeword placement scheme also
reveal that the MTTDL is sensitive to the rebuild distribution Gµ and to the
choice of the model A or B. It is observed that deterministic rebuild times have
better MTTDL values compared to random rebuild times because the terms of
the form Mm−l

1 (Gµ)/Mm−l(Gµ) are upper-bounded by one due to the Jensen’s
inequality, and the bound is achieved for deterministic rebuild times. The
explanation for this fact is that, when rebuild times are random, given that a
failure occurred during rebuild, it is more probable that the rebuild time was
larger. This effect is known as the waiting time paradox. The waiting time
paradox is also the reason for the MTTDL values to be higher under model B
than under model A because model A introduces additional randomness to the
rebuild times at each exposure level whereas model B does not.

Remark 6.8. For a given rebuild distribution Gµ and for (l,m)-MDS codes
with m− l ≤ 2, we note that the expressions for MTTDL under model A, given
by (6.55) and (6.56), and the expressions for MTTDL under model B, given by
(6.67), are not different. However, when m− l > 2, the MTTDL under model
A may differ from the MTTDL under model B. Furthermore, if the rebuild
times are deterministic, we note that the models A and B do not differ by
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definition (see (6.19) and (6.20)). Therefore, for deterministic rebuild times,
the MTTDL values under both models are the same.

Remark 6.9. The MTTDL of an erasure coded system with clustered place-
ment scheme is observed to scale down inversely proportional to the number
of nodes n. It is directly proportional to the (m − l + 1)th power of the mean
time to node failure 1/λ, and inversely proportional to the (m − l)th power
of the mean time to node rebuild 1/µ. This was also the case for replication-
based systems and is seen to be a general trend in the MTTDL behavior of data
storage systems.

Remark 6.10. Replication with replication factor r is equivalent to an (l,m)-
MDS code with parameters l = 1 and m = r. Therefore, as expected, it is seen
that the MTTDL expressions (6.55), (6.67), and (6.69) for clustered place-
ment in erasure coded systems with an (l,m)-MDS code respectively reduce to
the MTTDL expressions (4.74), (4.83), and (4.84) for clustered placement in
replication-based storage systems with replication factor r, when the parameters
l = 1 and m = r.

Remark 6.11. The use of erasure codes in data storage can be dated back
to the 1980s when it was used in designing systems with redundant arrays of
inexpensive disks, or RAID. The so-called RAID-5 system consists of clusters
of m disks where the user data blocks are striped across m − 1 disks of each
cluster along with one parity block on the mth disk of that cluster [16]. In
our model, this corresponds to a clustered codeword placement of an (m −
1,m)-MDS code. The expression for MTTDL of such a system, (6.67), is
seen to match with corresponding expression in [16] for a RAID-5 system.
Similarly, the MTTDL expressions for the so-called RAID-6 system [27], which
corresponds to a clustered codeword placement of an (m− 2,m)-MDS code, is
also seen to match with (6.67).

6.4.2 Declustered Codeword Placement

In most storage systems, the mean times to node failure and mean times to
node rebuilds are given constants because they depend on the particular type
of nodes used. For an (l,m)-MDS code based system with a given type of
nodes, one way to improve reliability is to increase m− l. However, this comes
at the cost of performance because each update to a user data block requires
the system to read its corresponding codeword, recompute the new codeword,
and write the new codeword blocks. The other alternative to improving reli-
ability may be to simply change the underlying codeword placement and the
way in which rebuild is done to gain significant improvements in reliability for
large storage systems. Declustered codeword placement is one of those ways
in which the system reliability can be improved over clustered placement for
large storage systems. The goal of this section is to estimate the reliability of
the declustered codeword placement scheme in terms of the mean time to data
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loss, and understand how this codeword placement scheme can achieve high
reliability in large systems. To achieve this goal, we first compute the condi-
tional means of rebuild times in each exposure level, µdeclus.

e , e = 1, · · · , r̃ − 1,
and the number of nodes whose failure can cause a transition to the next ex-
posure level, ñdeclus.

e , e = 1, · · · , r̃ − 1. Using these quantities and expressions
(6.23) and (6.24), we can compute the probability of data loss during rebuild,
P declus.
DL . The mean time to data loss, MTTDLdeclus., can then be obtained by

using the relation (3.14).

Declustered Codeword Placement: Exposure Level 1

Following a first-node failure at t1, the system enters exposure level 1 and the
rebuild process begins. The amount of data to be rebuilt at this exposure level
is equal to the capacity of the failed node, c, that is,

Ddeclus.
1 (t1) = c. (6.70)

By the nature of the declustered placement, them−1 remaining symbols of the
codewords corresponding to the failed node are spread equally across all the
surviving n− 1 nodes of the system. As described in Sections 2.6 and 6.2, the
distributed rebuild process in a declustered placement scheme involves reading
the required codeword symbols of the data to be rebuilt from all the surviving
nodes of the system, computing the lost codeword symbols, and writing them
to the spare space of these nodes in such a way that no codeword symbol is
written to a node in which another codeword symbol corresponding to the
same codeword is already present. This process requires reading lc amount
of data, as well as writing c amount of data, from and to all n − 1 surviving
nodes in parallel. As each of the n−1 nodes has an average read-write rebuild
bandwidth of cµ, and as l times more data is read from each node than what
is written during the distributed rebuild process, the average rate of rebuild
in exposure level 1 is

Sdeclus.
1 =

n− 1

l + 1
cµ. (6.71)

It can be seen that (6.71) reduces to the corresponding expression (4.86) for
replication based systems where the parameter l is one. The average time
required for this rebuild, 1/µdeclus.

1 , is obtained by dividing the amount of data
to be rebuilt, given by (6.70), by the average speed of rebuild, given by (6.71).
Thus,

1

µdeclus.
1

= E[Rdeclus.
1 ] =

Ddeclus.
1 (t1)

Sdeclus.
1

=
l + 1

(n− 1)µ
. (6.72)

According to our model, the rebuild time, R1, is distributed according to Gµ1 ,
that is,

Rdeclus.
1 ∼ Gµdeclus.

1
= Gn−1

l+1
µ. (6.73)
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There are n− 1 surviving nodes in the system, each containing equal amounts
of codewords symbols corresponding to the most-exposed data. So, the failure
of any of these nodes during the rebuild period Rdeclus.

1 will cause the system
to enter exposure level 2. Therefore, the number of nodes whose failure during
rebuild can cause a transition to the next exposure level is given by

ñdeclus.
1 = n− 1. (6.74)

When one of the ñdeclus.
1 nodes fail before rebuild, the system enters exposure

level 2.

Declustered Codeword Placement: Exposure Level 2

The system enters exposure level 2 from exposure level 1 because one of the
ñdeclus.
1 nodes fails during the rebuild period Rdeclus.

1 . Consider an instance of
the rebuild period,

Rdeclus.
1 = τ1, (6.75)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from 1 to 2 occurred,

α1 = a1. (6.76)

The remaining time to complete rebuild at exposure level 1 when the system
entered exposure level 2 is the product of Rdeclus.

1 and α1, namely, a1τ1. As the
average speed of rebuild in exposure is Sdeclus.

1 , it follows that the amount of
the most-exposed data not rebuilt when the exposure level transition occurred,
D1(t

−
2 ), is given by

Ddeclus.
1 (t−2 ) = α1R

declus.
1 Sdeclus.

1 = a1τ1
n− 1

l + 1
cµ, (6.77)

which is essentially the product of (6.71), (6.75), and (6.76). In contrast to
clustered placement, at the time of transition from exposure level 1 to 2, t2,
not all of this Ddeclus.

1 (t−2 ) amount of data loses a second codeword symbol.
As discussed in Section 2.4, due to the nature of the declustered codeword
placement scheme, the two failed nodes store codewords of only a fraction
m−1
n−1

of this data. So during the exposure level transition, only m−1
n−1

Ddeclus.
1 (t−2 )

amount of user data loses a second codeword symbol. Therefore, the amount
of most-exposed data in exposure level 2, Ddeclus.

2 (t2), is given by

Ddeclus.
2 (t2) =

m− 1

n− 1
Ddeclus.

1 (t−2 ) =
m− 1

l + 1
a1τ1cµ. (6.78)

By the nature of the declustered placement, the m − 2 remaining codeword
symbols of the most-exposed data are spread equally across all the surviving
n−2 nodes of the system. As described in Sections 2.6 and 6.2, the distributed
rebuild process in a declustered placement scheme involves reading the required
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codeword symbols of the data to be rebuilt from all the surviving nodes of the
system, computing the lost codeword symbols, and writing them to the spare
space of these nodes in such a way that no codeword symbol is written to a
node in which another codeword symbol corresponding to the same codeword
is already present. This process requires reading lc amount of data, as well as
writing c amount of data, from and to all n − 2 surviving nodes in parallel.
As each of the n− 2 nodes has an average read-write rebuild bandwidth of cµ,
and as l times more data is read from each node than what is written during
the distributed rebuild process, the average rate of rebuild in exposure level 2
is given by

Sdeclus.
2 =

n− 2

l + 1
cµ. (6.79)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µdeclus.

2 , of the rebuild time in
the second exposure level, Rdeclus.

2 , is obtained by dividing (6.78) by (6.79),
that is,

1

µdeclus.
2

= E[Rdeclus.
2 |Rdeclus.

1 = τ1, α1 = a1] =
Ddeclus.

2 (t2)

Sdeclus.
2

=
m− 1

n− 2
a1τ1. (6.80)

There are now n − 2 surviving nodes in the system, each containing equal
amounts of the codeword symbols corresponding to the most-exposed data.
So, the failure of any of these nodes during the rebuild period Rdeclus.

2 will
cause the system to enter exposure level 3. Therefore, the number of nodes
whose failure during rebuild can cause a transition to the next exposure level
is given by

ñdeclus.
2 = n− 2. (6.81)

Declustered Codeword Placement: Exposure Level e

The computation of the conditional mean 1/µdeclus.
e and the number of nodes

ñdeclus.
e for a general exposure level e = 2, · · · , r̃−1 is similar to the computation

of these quantities for exposure level 2 as described above. Firstly, we note
that the distributed rebuild process in each exposure level e always involves
reading the required codeword symbols of the data to be rebuilt from all the
n−e surviving nodes of the system, computing the lost codeword symbols, and
writing them to the spare space of these nodes in such a way that no codeword
symbol is written to a node in which another codeword symbol corresponding
to the same codeword is already present. This process requires reading lc
amount of data, as well as writing c amount of data, from and to all n − e
surviving nodes in parallel. Due to the nature of the declustered placement,
this involves reading and writing equal amounts of data in each node. As each
of the n − e nodes has an average read-write rebuild bandwidth of cµ, and
as l times more data is read from each node than what is written during the
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distributed rebuild process, the average rate of rebuild in exposure level e is
given by

Sdeclus.
e =

n− e

l + 1
cµ, e = 1, · · · , r̃ − 1. (6.82)

Now, the system enters exposure level e from exposure level e− 1 because
one of the ñdeclus.

e−1 nodes fails during the rebuild period Rdeclus.
e−1 . Consider an

instance of the rebuild period,

Rdeclus.
e−1 = τe−1, (6.83)

and an instance of the fraction of the rebuild period still left when the exposure
level transition from e− 1 to e occurred,

αe−1 = ae−1. (6.84)

The remaining time to complete rebuild at exposure level e − 1 when the
system entered exposure level e is the product of Rdeclus.

e−1 and αe−1, namely,
ae−1τe−1. As the average speed of rebuild in exposure is Sdeclus.

e−1 , it follows
that the amount of the most-exposed data not rebuilt when the exposure level
transition occurred, Ddeclus.

e−1 (t−e ), is given by

Ddeclus.
e−1 (t−e ) = αe−1R

declus.
e−1 Sdeclus.

e−1 = ae−1τe−1
n− e+ 1

l + 1
cµ, (6.85)

which is essentially the product of (6.82), (6.83), and (6.84). At the time of
transition from exposure level e−1 to e, te−1, not all of this D

declus.
1 (t−2 ) amount

of user data loses its eth codeword symbol. Due to the nature of the declustered
codeword placement scheme, the newly failed nodes store codewords of only
a fraction m−e+1

n−e+1
of this user data. So during the exposure level transition,

only m−e+1
n−e+1

Ddeclus.
1 (t−2 ) amount of user data loses its eth codeword symbol.

Therefore, the amount of most-exposed data in exposure level 2, Ddeclus.
2 (t2),

is given by

Ddeclus.
e (te) =

m− e+ 1

n− e+ 1
Ddeclus.

e (t−e ) =
m− e+ 1

l + 1
ae−1τe−1cµ. (6.86)

As the rebuild process is assumed to be intelligent, that is, the most-exposed
data are rebuilt first, the conditional mean, 1/µdeclus.

e , of the rebuild time in
the eth exposure level, Rdeclus.

e , is obtained by dividing (6.86) by (6.82), that
is,

1

µdeclus.
e

= E[Rdeclus.
e |Rdeclus.

e−1 = τe−1, αe−1 = ae−1] (6.87)

=
Ddeclus.

e (te)

Sdeclus.
e

(6.88)

=
m− e+ 1

n− e
ae−1τe−1. (6.89)
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There are now n − e surviving nodes in the system, each containing equal
amounts of the codeword symbols corresponding to the most-exposed data.
So, the failure of any of these nodes during the rebuild period Rdeclus.

e will
cause the system to enter exposure level e+1. Therefore, the number of nodes
whose failure during rebuild can cause a transition to the next exposure level
is given by

ñdeclus.
e = n− e. (6.90)

Declustered Codeword Placement: MTTDL under Model A

Recall that, under model A, following each exposure level transition, the sys-
tem is assumed to reconfigure its rebuild process entirely to rebuild the most-
exposed data blocks in the new exposure level. This model may be applicable
for a clustered placement scheme, where the l nodes from which data was being
rebuilt failed and hence the system has to rebuild from another set of l node
in the cluster. However, in a declustered placement scheme, where the dis-
tributed rebuild was being done from all n nodes, the failure of one node may
not significantly affect the rebuild process in a large system. Therefore, model
B may be better suited for the declustered placement scheme than model A.
Nonetheless, we will derive the expressions for declustered placement scheme
under model A for the sake of completeness.

Having computed the key quantities 1/µdeclus.
e and ñdeclus.

e for e = 1, · · · , r̃−
1, we are now ready to compute P declus.

DL using the expression (6.23) for model
A, and then MTTDLdeclus. using (3.14). By substituting the values of 1/µdeclus.

e

and ñdeclus.
e from (6.72), (6.89), and (6.90) into (6.23), we obtain

P declus.
DL ≈ λr̃−1 × (n− 1) · · · (n− r̃ + 1)×

∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

(
τ1 · · · τr̃−1

× gn−1
l+1

µ(τ1) · · · g n−r̃+1
(m−r̃+2)ar̃−2τr̃−2

(τr̃−1)d~ad~τ

)

(model A) (6.91)

As in (6.23) the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃− 1, and from 0
to 1 for ae, e = 1, · · · , r̃ − 2.

(l,m)-MDS codes with m − l ≤ 2: Similar to the case of clustered place-
ment, the expression (6.91) for P declus.

DL under model A cannot, in general, be
further simplified without considering a particular family of rebuild distribu-
tions Gµ. However, for m − l ≤ 2, or equivalently, for r ≤ 3, a closed form
expression for P declus.

DL , and hence MTTDLdeclus., can be obtained under model
A. This is illustrated by deriving the closed form expression for m− l = 2 by
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substituting r̃ = 3 in (6.91) and simplifying as follows.

P declus.
DL ≈ λ2 × (n− 1)(n− 2)×

∫ ∞

τ1=0

∫ ∞

τ2=0

∫ 1

a1=0

(
τ1τ2

× gn−1
l+1

µ(τ1)g n−2
(m−1)a1τ1

(τ2)da1dτ2dτ1

)
(6.92)

= (n− 1)(n− 2)λ2

(∫ ∞

τ1=0

τ1gn−1
l+1

µ(τ1)

∫ 1

a1=0

∫ ∞

τ2=0

(
τ2

× g n−2
(m−1)a1τ1

(τ2)
)
dτ2da1dτ1

)

for m− l = 2 (model A). (6.93)

Noting that

∫ ∞

τ2=0

τ2g n−2
(m−1)a1τ1

(τ2)dτ2 =
(m− 1)a1τ1

n− 2
, (6.94)

we get

P declus.
DL ≈ (n− 1)(m− 1)λ2

∫ ∞

τ1=0

τ 21 gn−1
l+1

µ(τ1)

∫ 1

a1=0

a1da1dτ1 (6.95)

=
1

2
(n− 1)(m− 1)λ2

∫ ∞

τ1=0

τ 21 gn−1
l+1

µ(τ1)dτ1 (6.96)

=
1

2
(n− 1)(m− 1)λ2M2

(
Gn−1

l+1
µ

)

for m− l = 2 (model A), (6.97)

where M2

(
Gn−1

l+1
µ

)
, as defined in (6.25), denotes the second raw moment of

the rebuild distribution Gn−1
l+1

µ. The expression for MTTDLdeclus. then follows

from (3.14):

MTTDLdeclus. ≈ 1

nλP declus.
DL

(6.98)

≈ 2

n(n− 1)(m− 1)λ3M2

(
Gn−1

l+1
µ

)

for m− l = 2 (model A). (6.99)

Multipliying and dividing (6.99) by square of the mean of the rebuild time
distribution Gn−1

l+1
µ,

M2
1

(
Gn−1

l+1
µ

)
=

(
l + 1

(n− 1)µ

)2

(6.100)
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we get

MTTDLdeclus. ≈ (n− 1)µ2

nλ3

2

(m− 1)(l + 1)2

M2
1

(
Gn−1

l+1
µ

)

M2

(
Gn−1

l+1
µ

) (6.101)

=
(n− 1)µ2

nλ3

2

(m− 1)3

M2
1

(
Gn−1

l+1
µ

)

M2

(
Gn−1

l+1
µ

)

for m− l = 2 (model A). (6.102)

For deterministic rebuild times, the second raw moment, M2

(
Gn−1

l+1
µ

)
, is

equal to the square of the first raw moment, M2
1

(
Gn−1

l+1
µ

)
, and therefore,

the term M2
1

(
Gn−1

l+1
µ

)
/M2

(
Gn−1

l+1
µ

)
evaluates to one. However, if the re-

build times are random, the second raw moment is always greater than the
square of the first raw moment by Jensen’s inequality, and therefore, the term

M2
1

(
Gn−1

l+1
µ

)
/M2

(
Gn−1

l+1
µ

)
is smaller than one. The closed form expression for

m− l = 1 can be derived similarly and is given by

MTTDLdeclus. ≈ µ

nλ2

1

m
for m− l = 1 (model A). (6.103)

(l,m)-MDS codes with m− l > 2: For (l,m)-MDS codes with m− l > 2,
or equivalently, for r̃ > 3, the evaluation of P declus.

Dl under model A involves
computing the expectations of functions involving higher raw moments of Gµ,
which cannot be done without considering a particular family of rebuild dis-
tributions. However, given a particular family of rebuild distributions, the
derivation of MTTDL involves successively evaluating the integrals in (6.91)
to compute P declus.

DL , and then using (3.14) to obtain MTTDLdeclus..

Declustered Codeword Placement: MTTDL under Model B

In contrast to model A, we assume in model B that, following an exposure
level transition, the system has to do little or no reconfiguration of the rebuild
process to rebuild the most-exposed data in the new exposure level. This is
the case in a declustered placement scheme, where the rebuild was being done
from all nodes, and therefore, in a large system, the failure of one node does
not signficantly affect the rebuild process. This impliles that the rebuild time
in the new exposure level is completely determined by the rebuild time and
the fraction of most-exposed data not rebuilt in the previous exposure level.
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By substituting the values of 1/µdeclus.
e and ñdeclus.

e from (6.72), (6.89), and
(6.90) into (6.24), we obtain

P declus.
DL ≈ λr̃−1 × (n− 1) · · · (n− r̃ + 1)

×
∫

τ1

· · ·
∫

τr̃−1

∫

a1

· · ·
∫

ar̃−2

(
τ1 · · · τr̃−1gn−1

l+1
µ(τ1)

× δ

(
τ2 −

m− 1

n− 2
a1τ1

)
· · · δ

(
τr̃−1 −

m− r̃ + 2

n− r̃ + 1
ar̃−2τr̃−2

)
d~ad~τ

)

(model B). (6.104)

As in (6.24) the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃− 1, and from 0
to 1 for ae, e = 1, · · · , r̃ − 2. In contrast to model A, closed form expressions
in terms of the raw moments of the rebuild distribution can be obtained for
model B as follows. By changing the order of integrals in (6.104), we obtain

P declus.
DL ≈ λr̃−1 × (n− 1) · · · (n− r̃ + 1)

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−1

(
τ1 · · · τr̃−1gn−1

l+1
µ(τ1)

× δ

(
τ2 −

m− 1

n− 2
a1τ1

)
· · · δ

(
τr̃−1 −

m− r̃ + 2

n− r̃ + 1
ar̃−2τr̃−2

)

× dτr̃−1 · · · dτ1d~a
)

(6.105)

= λr̃−1 × (n− 1) · · · (n− r̃ + 1)× m− r̃ + 2

n− r̃ + 1

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−2

(
τ1 · · · τ 2r̃−2ar̃−2gn−1

l+1
µ(τ1)

× δ

(
τ2 −

m− 1

n− 2
a1τ1

)
· · · δ

(
τr̃−2 −

m− r̃ + 3

n− r̃ + 2
ar̃−3τr̃−3

)

× dτr̃−2 · · · dτ1d~a
)

(6.106)

= λr̃−1 × (n− 1) · · · (n− r̃ + 1)× (m− r̃ + 2)

(n− r̃ + 1)
× (m− r̃ + 3)2

(n− r̃ + 2)2

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

· · ·
∫

τr̃−3

(
τ1 · · · τ 3r̃−3a

2
r̃−3ar̃−2gn−1

l+1
µ(τ1)

× δ

(
τ2 −

m− 1

n− 2
a1τ1

)
· · · δ

(
τr̃−3 −

m− r̃ + 4

n− r̃ + 3
ar̃−4τr̃−4

)

× dτr̃−3 · · · dτ1d~a
)

(6.107)
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...

= λr̃−1 × (n− 1)r̃−1 ×
r̃−2∏

e=1

(
m− e

n− e

)r̃−e−1

×
∫

a1

· · ·
∫

ar̃−2

∫

τ1

τ r̃−1
1 ar̃−2

1 · · · a2r̃−3ar̃−2gn−1
l+1

µ(τ1)dτ1d~a

(model B). (6.108)

Here, steps (6.106)–(6.108) follow by successively integrating over τr̃−1, · · · , τ2,
using the Dirac delta function’s property, cancelling out terms of the form
(n− r̃+ e), e = 1, · · · , r̃− 2, and rewriting the terms outside the integral after
multiplying and dividing by (n − 1)r̃−1. Changing the order of the integrals
and integrating out a1, · · · , ar̃−2, we get

P declus.
DL ≈ λr̃−1(n− 1)r̃−1

r̃−2∏

e=1

(
m− e

n− e

)r̃−e−1 ∫

τ1

τ r̃−1
1 gn−1

l+1
µ(τ1)

1

(r̃ − 1)!
dτ1

= λr̃−1Mr̃−1

(
Gn−1

l+1
µ

) (n− 1)r̃−1

(r̃ − 1)!

r̃−2∏

e=1

(
m− e

n− e

)r̃−e−1

(6.109)

= λm−lMm−l

(
Gn−1

l+1
µ

) (n− 1)m−l

(m− l)!

m−l−1∏

e=1

(
m− e

n− e

)m−l−e

(model B), (6.110)

where Mm−l(Gn−1
l+1

µ), as defined in (6.25), denotes the (m− l)th raw moment of

the rebuild distributionGn−1
l+1

µ. Here, the last step was obtained by substituting

for r̃ from its definition (6.1), that is, r̃ = m − l + 1. The expression for
MTTDLdeclus. then follows from (3.14):

MTTDLdeclus. ≈ 1

nλP declus.
DL

(6.111)

≈ 1

nλm−l+1Mm−l

(
Gn−1

l+1
µ

) (m− l)!

(n− 1)m−l

m−l−1∏

e=1

(
n− e

m− e

)m−l−e

(model B). (6.112)

Multiplying and dividing (6.112) by the (m − l)th power of the mean of the
rebuild time distribution Gn−1

l+1
µ,

Mm−l
1

(
Gn−1

l+1
µ

)
=

(
l + 1

(n− 1)µ

)m−l

(6.113)
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we get

MTTDLdeclus. ≈ µm−l

nλm−l+1

Mm−l
1

(
Gn−1

l+1
µ

)

Mm−l

(
Gn−1

l+1
µ

) (m− l)!

(l + 1)m−l

m−l−1∏

e=1

(
n− e

m− e

)m−l−e

(model B). (6.114)

For deterministic rebuild times, the (m − l)th raw moment, Mm−l

(
Gn−1

l+1
µ

)
,

is equal to the (m − l)th power of the first raw moment, Mm−l
1

(
Gn−1

l+1
µ

)
,

and therefore, the term Mm−l
1

(
Gn−1

l+1
µ

)
/Mm−l

(
Gn−1

l+1
µ

)
evaluates to one. For

random rebuild times, by the Jensen’s inequality, the (m− l)th raw moment,

Mm−l

(
Gn−1

l+1
µ

)
, is always greater than the (m − l)th power of the first raw

moment, Mm−l
1

(
Gn−1

l+1
µ

)
, and therefore, their ratio evaluates to less than one.

As an example, if Gn−1
l+1

µ is exponential, the expression for MTTDLdeclus.

reduces to the following:

MTTDLdeclus. ≈ µm−l

nλm−l+1

1

(l + 1)m−l

m−l−1∏

e=1

(
n− e

m− e

)m−l−e

when Gn−1
l+1

µ is exponential (model B). (6.115)

Remark 6.12. The expressions (6.102), (6.103), (6.114), and (6.115) for the
mean time to data loss of a storage system with declustered codeword placement
scheme under both models A and B are seen to be invariant within the class
of node failure distributions that satisfy (2.10) and (2.11). In particular, the
MTTDL only depends on the mean of the times to node failure, 1/λ. As the
conditions (2.10) and (2.11) hold true for real-world storage nodes as well,
these MTTDL results are of practical significance.

Remark 6.13. The expressions (6.102), (6.114), and (6.115) for the mean
time to data loss of a storage system with declustered codeword placement
scheme also reveal that the MTTDL is sensitive to the rebuild distribution
Gn−1

l+1
µ. It is observed that deterministic rebuild times have higher MTTDL val-

ues compared to random rebuild times. This is because the terms of the form

Mm−l
1

(
Gn−1

l+1
µ

)
/Mm−l

(
Gn−1

l+1
µ

)
are upper-bounded by 1 due to the Jensen’s

inequality, and this bound is achieved for deterministic rebuild times. The ex-
planation for this fact is that, when rebuild times are random, given that a
failure occurred during rebuild, it is more probable that the rebuild time was
larger. This effect is known as the waiting time paradox. Larger rebuild times
imply that a larger amount of most-exposed data remains unrebuilt when the
system enters a higher exposure level, thereby reducing the reliability.
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Remark 6.14. Comparing the MTTDL values of clustered placement in (6.67)
with those of declustered placement in (6.114), we observe that they are both
directly proportional to the (m − l + 1)th power of the mean time to node
failure 1/λ, and inversely proportional to the (m− l) power of the mean time
to node rebuild 1/µ. This is a general trend in the MTTDL behavior of data
storage systems. However, in contrast to clustered placement, the MTTDL of
declustered placement is observed to scale differently with the number of nodes,
n, for different values of r̃ = m − l + 1. It can be seen from (6.114) that the
MTTDL of declustered placement scales roughly as the (r̃(r̃− 3)/2)th power of
n, or equivalently as the (m−l+1)(m−l−2)/2)th power of n. For m−l = 1, the
MTTDL of declustered placement scales inversely proportional to n, just like in
clustered placement. For m−l = 2, the MTTDL of declustered placement stays
roughly constant with n. For m− l > 2, the MTTDL of declustered placement
increases with n. This shows that, by changing the codeword placement scheme,
one can influence the scaling of MTTDL with respect to the number of nodes n,
resulting in a tremendous improvement in reliability for large storage systems.

6.4.3 Other Symmetric Codeword Placement Schemes

As discussed in Section 2.4, a broader set of symmetric placement schemes can
be defined using the concept of spread factor. For each node in the system, its
redundancy spread factor is defined as the number of nodes over which the data
on that node and its corresponding redundant data are spread. In an erasure
coded system, when a node fails, its spread factor determines the number of
nodes which have the codeword symbols corresponding to the lost data, and
this in turn determines the degree of parallelism that can be used in rebuilding
the data lost by that node. In this thesis, we will consider symmetric placement
schemes for which the spread factor of each node is the same, denoted by k. In
a symmetric placement scheme, the m−1 codeword symbols corresponding to
the data on each node are equally spread across k − 1 other nodes, the m− 2
codeword symbols corresponding to the codewords shared by any two nodes
are equally spread across k − 2 other nodes, and so on. One example of such
a symmetric placement scheme is the clustered placement scheme for which
the spread factor, k, is equal to the codeword length, m. Another example of
a symmetric placement scheme is the declustered placement scheme for which
the spread factor, k, is equal to the number of nodes, n. A number of different
placement schemes can be generated by varying the spread factor k between m
and n. By similar arguments and computations as in the previous subsection,
the MTTDL of a scheme with spread factor k > m, denoted by, MTTDL(k),
is given by

MTTDL(k) ≈ µm−l

nλm−l+1

Mm−l
1

(
G k−1

l+1
µ

)

Mm−l

(
G k−1

l+1
µ

) (m− l)!

(l + 1)m−l

m−l−1∏

e=1

(
k − e

m− e

)m−l−e

for k = m+ 1, · · · , n (model B). (6.116)
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Spread factor k = m corresponds to clustered placement and therefore, its
MTTDL is given by (6.67), that is,

MTTDL(m) ≈ µm−l

nλm−l+1

1(
m−1
l−1

)M
m−l
1 (Gµ)

Mm−l(Gµ)
(model B). (6.117)

The difference in the derivation, and hence the final expressions, of MTTDL for
k > m and for k = m stems from the assumptions made on the rebuild process.
For a system with spread factor k > m, we assume that a distributed rebuild
process is used that involves, at each exposure level e, reading the required
codeword symbols from k − e nodes, computing the most-exposed codeword
symbols, and writing them to the spare space of these k − e nodes in such a
way that no codeword symbol is written to a node in which another codeword
symbol corresponding to the same codeword is already present. However, when
the spread factor k = m, such a rebuild process cannot be done because it is
not possible to write the reconstructed codeword symbols to the spare space
of the m − e nodes in such a way that no codeword symbol is written to a
node in which another codeword symbol corresponding to the same codeword
is already present. Therefore, it assumed that the reconstructed codeword
symbols are written to a new replacement node directly. This affects the rate
of rebuild processes thereby affecting the derivation and the final expressions
of MTTDL.

6.5 Placement, Storage Efficiency, and

Reliability

In this section, we compare the MTTDLs of (l,m)-MDS code based systems for
clustered and declustered placement schemes for various choice of parameters
l and m with the help of figures. Typically, the MDS codes used for data
storage are such that l out ofm codeword symbols of each codeword are exactly
the same as the l blocks of user data used to encode the codeword, and the
m− l remaining codeword symbols are referred to as parities. The number of
parities in a codeword, namely, m− l, is an important factor that determines
the performance as well as reliability of a storage system. Any update to a
user data block may require the system to read the parities of the codeword
corresponding to that data block, recompute these parities, and update these
parities along with the user data block. Therefore, the number of parities
directly affect the number of IO operations to be performed at each update. A
larger number of parities will require a larger number of IO operations which
in turn negatively affects the performance of the system. Secondly, the number
of parities, m − l, affects the reliability of the system as it directly relates to
the number of node failures that need to occur to cause data loss. In addition,
the number of parities also affects the reliability behavior of various placement
schemes as the number of nodes in the system increases. Therefore, we will



www.manaraa.com

6.5. Placement, Storage Efficiency, and Reliability 117

10
0

10
1

10
2

10
2

10
3

10
4

10
5

Number of nodes

M
T

T
D

L 
(in

 d
ay

s)

 

 

Single Parity Codes
1/λ = 30000 h
1/µ = 30 h

(1,2)−MDS, clustered
(1,2)−MDS, declustered
(3,4)−MDS, clustered
(3,4)−MDS, declustered
(7,8)−MDS, clustered
(7,8)−MDS, declustered
(15,16)−MDS, clustered
(15,16)−MDS, declustered

Figure 6.1: MTTDL of single parity codes vs. the number of nodes for mean
time to node failure 1/λ = 30000 h and mean time to read all contents of a
node during rebuild 1/µ = 30 h.

compare the MTTDLs of various placement schemes for a given number of
parities.

Note that models A and B, as described in Section 6.3.3, do not differ in
the values of MTTDL for m − l ≤ 2. Furthermore, the difference between
models A and B for m− l > 2 is typically only a constant factor that depends
on the rebuild distribution. Also, if the the rebuild times are deterministic,
there is no difference between models A and B and therefore they agree on
the MTTDL values for all m − l ≥ 1. So, without loss of generality, we will
only consider the MTTDL values under model B for further discussions in this
section.

6.5.1 Single Parity Codes

Single parity (l,m)-MDS codes correspond to the case where m− l = 1. When
l = 1, this corresponds to two-way replication. For higher values of l, this
corresponds to RAID-5 [16]. Plugging l = m − 1 in (6.67) and (6.114), we
obtain the MTTDL values for single parity codes for clustered and declustered
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Figure 6.2: MTTDL of single parity codes as a function of codeword length m
and spread factor k for a system with number of nodes n = 20.

placement schemes, respectively:

MTTDLclus. ≈ µ

nλ2

1

m− 1
for m = 2, · · · , n (single parity codes). (6.118)

MTTDLdeclus. ≈ µ

nλ2

1

m
for m = 2, · · · , n (single parity codes). (6.119)

From (6.118) and (6.119), it is observed that the MTTDL of single parity codes
under both placement schemes are directly proportional to the square of the
mean time to node failure, 1/λ, and inversely proportional to the mean time
to read all contents of a node during rebuild, 1/µ. In addition, the MTTDL
values are seen to be independent of the underlying rebuild distribution. The
result (6.118) for clustered placement is well known since the 1980s when the
reliability of RAID-5 systems were studied [16]. The difference in MTTDL
between the two schemes is only a factor m/(m − 1) which is at most 2,
when m = 2, that is, for two-way replicated systems. For higher values of
m, the difference in MTTDL between clustered and declustered is smaller. as
is illustrated by Figure 6.1. For a symmetric placement scheme with spread
factor k > m, the MTTDL of single parity codes follows from (6.116) by
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Figure 6.3: MTTDL of single parity codes as a function of storage efficiency
(m− 1)/m and spread factor k for a system with number of nodes n = 20.

substituting l = m− 1:

MTTDL(k) ≈ µ

nλ2

1

m
for k = m+ 1, · · · , n, and m = 2, · · · , n

(single parity codes). (6.120)

Spread factor k = m corresponds to clustered placement scheme, and so its
MTTDL is given by (6.118):

MTTDL(m) ≈ µ

nλ2

1

m− 1
for m = 2, · · · , n (single parity codes). (6.121)

It is observed from (6.120) that changing the spread factor k between m+1
and n does not have any effect on the MTTDL. This is because, although in-
creasing factor speeds up the rebuild process as more number of nodes are
involved in a parallel rebuild process, it also increases the number of nodes,
whose failure during rebuild can cause some codewords to lose additional sym-
bols, by a proportional amount. These effects cancel each other out resulting
in an MTTDL that is unaffected by a change in spread factor. In fact, for repli-
cation factor 2, it can be shown that all possible placement schemes, not only
symmetric placement schemes, have MTTDL values that differ by at most a
factor two [15]. Figure 6.2 shows how the MTTDL varies as a function of both
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the codeword length m and the spread factor k for single parity codes, for a
given number of nodes n. In Figure 6.2, two-way replicated systems correspond
to the case where the codeword length is 2, clustered placement corresponds
to the cases where the spread factor is equal to the codeword length, and
declustered placement corresponds to the case where the spread factor is equal
to the number of nodes. It is observed that the clustered placement scheme
has slightly higher MTTDL values than other placement schemes, and that
increasing the codeword length decreases the MTTDL.

The storage efficiency of a redundancy scheme is equal to the ratio of
the amount of user data to the actual amount of data stored in the system.
A higher storage efficiency is desirable as it implies a lower cost of storage
media. The storage efficiency of a system using a single parity code with
codeword length m is equal to (m − 1)/m, as each set of m − 1 user data
blocks requires storing m codeword blocks in the system. Therefore, Figure 6.2
is easily transformed into Figure 6.3 to show the MTTDL as a function of
storage efficiency, (m− 1)/m, and spread factor, k.

6.5.2 Double Parity Codes

Double parity (l,m)-MDS codes correspond to the case where m − l = 2.
When l = 1, this corresponds to three-way replication. For higher values of l,
this corresponds to RAID-6 [27]. Plugging l = m− 2 in (6.67) and (6.114), we
obtain the MTTDL values for double parity codes for clustered and declustered
placement schemes, respectively:

MTTDLclus. ≈ µ2

nλ3

2

(m− 1)(m− 2)

M2
1 (Gµ)

M2(Gµ)
for m = 3, · · · , n

(double parity codes). (6.122)

MTTDLdeclus. ≈ (n− 1)µ2

nλ3

2

(m− 1)3

M2
1

(
G n−1

m−1
µ

)

M2

(
G n−1

m−1
µ

) for m = 3, · · · , n

(double parity codes). (6.123)

From (6.122) and (6.123), it is observed that the MTTDL of double parity
codes under both placement schemes are directly proportional to the cube of
the mean time to node failure, 1/λ, and inversely proportional to the square of
the mean time to read all contents of a node during rebuild, 1/µ. In contrast
to single parity codes, it is seen that the MTTDL depends on the rebuild
distribution. For deterministic rebuild times, the ratios M2

1 (Gµ)/M2(Gµ) and

M2
1

(
G n−1

m−1
µ

)
/M2

(
G n−1

m−1
µ

)
become one. However, for random rebuild times,

these ratios are upper-bounded by one by Jensen’s inequality. As an example,
if the rebuild time distribution was exponential, these ratios are equal to 1/2
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Figure 6.4: MTTDL of a (2, 4)-MDS code vs. the number of nodes for mean
time to node failure 1/λ = 30000 h and mean time to read all contents of a
node during rebuild 1/µ = 30 h.

and therefore

MTTDLclus. ≈ µ2

nλ3

1

(m− 1)(m− 2)
for m = 3, · · · , n

(double parity codes, exponential rebuild times). (6.124)

MTTDLdeclus. ≈ (n− 1)µ2

nλ3

1

(m− 1)3
for m = 3, · · · , n

(double parity codes, exponential rebuild times). (6.125)

The result (6.124) for clustered placement is well known in the context of
RAID-6 systems [27]. The MTTDL of a system using a (2, 4)-MDS code is
plotted against the number of nodes in the system for clustered and declus-
tered placements, as well as for deterministic and exponential rebuild times,
in Figure 6.4. It is observed that the rebuild time distribution scales down
the MTTDL, but leaves the behavior with respect to the number of nodes, n,
unaffected. This has also been verified by means of simulation in Chapter 7.

In contrast to single parity codes, the difference in MTTDL between the
two schemes can be significant, depending on the number of nodes, n, in
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Figure 6.5: MTTDL of double parity codes vs. the number of nodes for mean
time to node failure 1/λ = 30000 h and mean time to read all contents of a
node during rebuild 1/µ = 30 h.

the system. This is because, as seen from (6.122) and (6.123), the MTTDL
of clustered placement is inversely proportional to n, whereas the MTTDL of
declustered placement is roughly invariant with respect to n. This is illustrated
in Figure 6.5 in which MTTDL of double parity codes is plotted against the
number of nodes, n, in a log-log scale. The lines corresponding to clustered
placement have a slope of −1 indicating that the MTTDL is inversely propor-
tional to n, whereas the lines corresponding to declustered placement have a
slope of roughly 0 indicating that the MTTDL is invariant with respect to n. It
is also observed from Figure 6.5 that longer codes, which are more desirable as
they have higher storage efficiency, can have better MTTDL with declustered
placement than shorter codes with clustered placement for large systems. This
is seen, for example, by observing the lines corresponding to (4, 6)-MDS code
with declustered placement and (1, 3)-MDS code with clustered placement, for
n > 100. Just like in the case of single parity codes, the difference in MTTDL
between clustered and declustered is observed to be smaller for larger values
of the codeword length, m.

For a symmetric placement scheme with spread factor k > m, the MTTDL
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of double parity codes follows from (6.116) by substituting l = m− 2:

MTTDL(k) ≈ (k − 1)µ2

nλ3

2

(m− 1)3

M2
1

(
G k−1

m−1
µ

)

M2

(
G k−1

m−1
µ

) for k = m+ 1, · · · , n,

and m = 3, · · · , n (double parity codes). (6.126)

Spread factor k = m corresponds to clustered placement scheme, and so
its MTTDL is given by (6.122):

MTTDLclus. ≈ µ2

nλ3

2

(m− 1)(m− 2)

M2
1 (Gµ)

M2(Gµ)
for m = 3, · · · , n

(double parity codes). (6.127)

It is observed from (6.126) that, in contrast to single parity codes, increasing
the spread factor k improves the MTTDL proportional to k. This is because,
due to the spreading of codewords over more number of nodes, the amount of
most-exposed data at each successive exposure level decreases rapidly, thereby
reducing the chances of data loss. It is due to the fact that the amount of most-
exposed data decreases at each exposure level, and not necessarily because
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Figure 6.7: MTTDL of double parity codes as a function of storage efficiency
(m− 2)/m and spread factor k for a system with number of nodes n = 20.

the rebuild times are much faster, that the MTTDL values increase with the
spread factor k. Figure 6.6 shows how the MTTDL varies as a function of
both the codeword length m and the spread factor k for double parity codes,
for a given number of nodes, n. In Figure 6.6, three-way replicated systems
correspond to the case where the codeword length is 3, clustered placement
corresponds to the cases where the spread factor is equal to the codeword
length, and declustered placement corresponds to the case where the spread
factor is equal to the number of nodes. It is observed that increasing the
spread factor increases the MTTDL, and that increasing the codeword length
decreases the MTTDL.

The storage efficiency of a system using a double parity code with code-
word length m is equal to (m − 2)/m, as each set of m − 2 user data blocks
requires storing m codeword blocks in the system. Therefore, Figure 6.6 is eas-
ily transformed into Figure 6.7 to show the MTTDL as a function of storage
efficiency, (m− 2)/m, and spread factor, k.

6.5.3 Triple Parity Codes

Triple parity (l,m)-MDS codes correspond to the case where m− l = 3. When
l = 1, this corresponds to four-way replication. Plugging l = m − 2 in (6.67)
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Figure 6.8: MTTDL of a (2, 5)-MDS code vs. the number of nodes for mean
time to node failure 1/λ = 30000 h and mean time to read all contents of a
node during rebuild 1/µ = 30 h.

and (6.114), we obtain the MTTDL values for triple parity codes for clustered
and declustered placement schemes, respectively:

MTTDLclus. ≈ µ3

nλ4

6

(m− 1)(m− 2)(m− 3)

M3
1 (Gµ)

M3(Gµ)
for m = 4, · · · , n

(triple parity codes). (6.128)

MTTDLdeclus. ≈ (n− 1)2(n− 2)µ3

nλ4

6

(m− 1)2(m− 2)4

M3
1

(
G n−1

m−2
µ

)

M3

(
G n−1

m−2
µ

)

for m = 4, · · · , n (triple parity codes). (6.129)

From (6.128) and (6.129), it is observed that the MTTDL of triple parity
codes under both placement schemes are directly proportional to the fourth
power of the mean time to node failure, 1/λ, and inversely proportional to
the cube of the mean time to read all contents of a node during rebuild, 1/µ.
As was the case in double parity codes, the MTTDL depends on the rebuild
distribution. For deterministic rebuild times, the ratios M3

1 (Gµ)/M3(Gµ) and
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M3
1

(
G n−1

m−2
µ

)
/M2

(
G n−1

m−2
µ

)
become one. However, for random rebuild times,

these ratios are upper-bounded by one by Jensen’s inequality. As an example,
if the rebuild time distribution was exponential, these ratios are equal to 1/6
and therefore

MTTDLclus. ≈ µ3

nλ4

1

(m− 1)(m− 2)(m− 3)
for m = 4, · · · , n

(triple parity codes, exponential rebuild times). (6.130)

MTTDLdeclus. ≈ (n− 1)2(n− 2)µ3

nλ4

1

(m− 1)2(m− 2)4
for m = 4, · · · , n

(triple parity codes, exponential rebuild times). (6.131)

Comparing (6.131) with (6.129), it is observed that the rebuild time distri-
bution scales down the MTTDL, but leaves the behavior with respect to the
number of nodes, n, unaffected. This can be seen in the plots of MTTDL of
a system using a (2, 5)-MDS code against the number of nodes in the system
for clustered and declustered placements, as well as for deterministic and ex-
ponential rebuild times, in Figure 6.8. Also, as in the case of double parity
codes, the difference in MTTDL between the two schemes can be significant,
depending on the number of nodes, n, in the system. This is because, as
seen from (6.128) and (6.129), the MTTDL of clustered placement is inversely
proportional to n, whereas the MTTDL of declustered placement is roughly
proportional to the square of n. This is illustrated in Figure 6.8 in which
MTTDL is plotted against the number of nodes, n, in a log-log scale. The
lines corresponding to clustered placement have a slope of −1 indicating that
the MTTDL is inversely proportional to n, whereas the lines corresponding to
declustered placement have a slope of roughly 2 indicating that the MTTDL
is proportional to the square to n.

For a symmetric placement scheme with spread factor k > m, the MTTDL
of triple parity codes follows from (6.116) by substituting l = m− 2:

MTTDL(k) ≈ (k − 1)2(k − 2)µ3

nλ4

6

(m− 1)2(m− 2)4

M3
1

(
G k−1

m−2
µ

)

M3

(
G k−1

m−2
µ

)

for k = m+ 1, · · · , n and m = 4, · · · , n (triple parity codes). (6.132)

Spread factor k = m corresponds to clustered placement scheme, and so its
MTTDL is given by (6.128):

MTTDLclus. ≈ µ3

nλ4

6

(m− 1)(m− 2)(m− 3)

M3
1 (Gµ)

M3(Gµ)
for m = 4, · · · , n

(triple parity codes). (6.133)
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Figure 6.9: MTTDL of triple parity codes as a function of codeword length m
and spread factor k for a system with number of nodes n = 20.

It is observed from (6.132) that, like in the case of double parity codes,
increasing the spread factor k improves the MTTDL. The improvement, how-
ever, is much larger because the MTTDL is roughly proportional to the cube of
k. The reason for this is the same as in the case of double parity codes, namely,
due to the spreading of codewords over more number of nodes, the amount of
most-exposed data at each successive exposure level decreases rapidly, thereby
reducing the chances of data loss. Figure 6.9 shows how the MTTDL varies
as a function of both the codeword length m and the spread factor k for triple
parity codes, for a given number of nodes, n. In Figure 6.9, four-way replicated
systems correspond to the case where the codeword length is 3, clustered place-
ment corresponds to the cases where the spread factor is equal to the codeword
length, and declustered placement corresponds to the case where the spread
factor is equal to the number of nodes. It is observed that increasing the spread
factor increases the MTTDL significantly, and that increasing the codeword
length decreases the MTTDL significantly.

The storage efficiency of a system using a triple parity code with codeword
length m is equal to (m− 3)/m, as each set of m− 3 user data blocks requires
storing m codeword blocks in the system. Therefore, Figure 6.9 is easily trans-
formed into Figure 6.10 to show the MTTDL as a function of storage efficiency,
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(m− 3)/m, and spread factor, k.
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Reliability Simulations 7
Event-driven simulations are used to verify the theoretical estimates of MTTDL
of replication-based systems for two placement schemes, namely, clustered and
declustered, under various rebuild and failure time distributions, and under
network rebuild bandwidth constraints. The simulations are more involved
than the theoretical analysis as they do not make any of the approximations
made in theory. Despite this fact, it is found that the simulations match the-
oretical estimates for a wide range of parameters, including the parameters
generally observed in practice, thereby validating the applicability of the re-
liability analysis to real-world storage systems. A detailed description of the
simulation method used and a comparison of simulation results and theory for
a variety of storage system models is presented in this chapter.

7.1 Simulation Method

The storage system is simulated using an event-driven simulation with three
types of events that drive the simulation time forward: (a) failure events, (b)
rebuild-complete events, and (c) node-restore events. The state of the system is
maintained by the following variables: time, the simulated time, nActiveNodes,
the number of active (surviving) nodes in the system, failTimes, the times
of next failure of each active node generated according to the distribution Fλ,
failedNodes, the indices of all failed nodes, exposureLevel, the exposure level,
and a vector of length (r + 1), dataExposure = (D0, · · · , Dr), where De is the
amount of user data that have lost e replicas, e = 1, · · · , r. The values of these
variables are updated at each event, and when Dr > 0, data loss is said to
have occurred and the simulation ends.

For each set of parameters, the simulation is run 100 times, and the MTTDL
and its 95% confidence intervals are computed. Whereas for declustered place-

129
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ment, the simulation is run for n nodes, for clustered placement, the simula-
tions are run only for one cluster, that is, r nodes, and the obtained MTTDL
of the cluster is divided by n/r to obtain the MTTDL of the system. This is
because clusters are independent of each other and the number of clusters is
n/r.

7.1.1 Failure Event

Besides updating time, a failure event triggers the following: (i) decreas-
ing activeNodes by one and increasing exposureLevel by one (recall that,
for the declustered scheme, any node failure causes an exposure level transi-
tion, and that, for the clustered scheme, only one cluster is being simulated
and therefore any node failure in that cluster causes an exposure level transi-
tion), (ii) scheduling the next failure event based on failTimes, (iii) updating
dataExposure by taking partial rebuild of the most exposed data into account,
and (iv) scheduling the rebuild-complete event based on the most exposed
data in dataExposure, the placement scheme used (which determines the par-
allelism that can be exploited and therefore the speed of rebuild), network
rebuild bandwidth limitations, and the rebuild distribution. By the nature
of the rebuild process, data placement is preserved, that is, declustered re-
mains declustered and clustered remains clustered. This is because, when
the placement is declustered, critical blocks are read from and written to all
nodes at the same time and the new replicas are placed such that decluster-
ing is preserved. When the placement is clustered, the replicas are created
in a new node directly which preserves the placement. A main difference be-
tween declustered and clustered placement is how the data exposure vector
changes at each exposure level transition. It was shown in the previous chap-
ters that the main reason for declustered placement to have higher reliability
is the fact that the amount of most-exposed data at each exposure level de-
creases significantly as the system enters higher exposure levels. Therefore,
proper computation of data exposure vector at each exposure level transition
for declustered placement is an important step in its reliability simulation.
Whereas the computation of data exposure vector for clustered placement is
fairly straightforward, the computation of data exposure vector for declustered
placement is more involved.

Data Exposure Vector for Declustered Placement

For declustered placement at exposure level e, when a failure occurs, the data
exposure vector, dataExposure, is updated from (D0, D1, · · · , De, 0, · · · , 0) to
(D′

0, D
′
1, · · · , D′

e, D
′
e+1, 0, · · · , 0) as follows. Let ñ denote the number of active

nodes in the system at exposure level e. For j = 0, · · · , e − 1, the amount
of user data that has r − j surviving replicas in exposure level e is equal to
Dj. These r − j replicas are equally spread across the ñ surviving nodes of
the system due to the nature of declustered placement and distributed rebuild.
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Therefore, when an additional node failure occurs, r−j
ñ
Dj loses its (j + 1)th

replica, for j = 0, · · · , e− 1. So, D′
j, j = 0, · · · , e− 2 is given by

D′
0 = D0 −

r

ñ
D0, (7.1)

D′
j = Dj −

r − j

ñ
Dj +

r − j + 1

ñ
Dj−1, for j = 1, · · · , e− 2, (7.2)

If α denotes the fraction of rebuild time at exposure level e still left when a
transition to exposure level e+ 1 occurred, then D′

e+1 follows from (4.101):

D′
e+1 =

r − e

ñ
αDe. (7.3)

This is because, r−e
ñ
αDe amount of user data loses its (e+ 1)th replica during

the exposure level transition. However, an additional replica of (1 − α)De

amount of user data was created by the rebuild process in exposure level e.
Therefore,

D′
e−1 = De−1 −

r − e+ 1

ñ
De−1 +

r − e+ 2

ñ
De−2 + (1− α)De, (7.4)

In addition, r−e+1
ñ

De−1 amount of user data loses its eth replica during the
exposure level transition. Therefore, it follows that D′

e is given by

D′
e = De −

r − e

ñ
αDe +

r − e+ 1

ñ
De−1 − (1− α)De. (7.5)

Data loss occurs when Dr becomes positive.

7.1.2 Rebuild-Complete Event

A rebuild-complete event updates time and triggers the following: (i) decreas-
ing exposureLevel by one, (ii) at exposure level e, e = 1, · · · , r − 1, updating
dataExposure by adding De to De−1 and setting De to zero (this means that
the rebuild process always creates replicas of the most exposed data first,
or in other words, an intelligent rebuild is done), (iii) scheduling the next
rebuild-complete event based on the most exposed data, the placement scheme,
network rebuild bandwidth limitations, and the rebuild distribution. Besides
these, there are a few other updates that differ based on placement: for declus-
tered placement, when all data have r copies, that is, when the exposure level
becomes 0, a node-restore event is scheduled. A node-restore event occurs at
the time when all the replicas that were newly created have been successfully
transferred to new replacement nodes and the number of nodes is brought back
to n. The number of nodes to restore is stored in nodesToRestore. For clus-
tered placement, activeNodes is increased by one (because copies are being
directly created in a new node and so a node-restore event is not required),
and a failure time for the newly restored node is generated using the failure
distribution Fλ.
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7.1.3 Node-Restore Event

A node-restore event is scheduled only for declustered placement. Besides up-
dating the simulated time, this event increases activeNodes by nodesToRestore

and sets nodesToRestore to zero. Failure times for the newly restored nodes
are scheduled using the failure distribution Fλ.

7.2 Theory vs. Simulation

Although some of the assumptions used in the theoretical analysis, such as
independence of node failures, are also used in the simulation, the simula-
tion results reflect a more realistic picture of the systems’s reliability. This is
because of the following key differences between the theoretical analysis and
the simulations. The theoretical estimate of MTTDL in (3.14) takes into ac-
count only the time spent by the system in the fully-operational mode and
ignores the time spent in rebuild mode, whereas the simulations do not ignore
the rebuild times when calculating the times to data loss. Furthermore, in
(4.3), PDL is approximated by the probability of the direct path to data loss.
In simulations however, all the complex trajectories of the system through
the different exposure levels are simulated by simulating random node failure
events and updating the data exposure vector by taking partial rebuilds into
account. In the theoretical analysis, the time required to restore new nodes
in a declustered placement scheme (following successful rebuild of lost replicas
in the spare space of surviving nodes) is ignored, whereas in the simulations,
the time to restore new nodes is simulated as well. In addition, other approx-
imations made in the analysis, such as neglecting the effect of the transient
period of the system, are implicitly avoided in the simulations. Therefore, the
simulations reflect a more comprehensive picture of the system behavior than
what is assumed in theory.

7.3 Simulation Results

Table 7.1 shows the range of parameters used for the simulations. Typical
values for practical systems are used for all parameters, except for the mean
times to failure of a node, which have been chosen artificially low (10000 h,
1000 h, and 400 h for replication factors 2, 3, and 4, respectively) to run the
simulations fast. The running times of simulations with practical values of
the mean times to node failure, which are of the order of 10000 h or higher,
are prohibitively high; this is due to the fact that PDL becomes extremely
low thereby making the number of first-node-failure events that need to be
simulated (along with the other complex set of events that restore all lost
replicas following each first-node-failure event) extremely high for each run
of the simulation. It is seen that, despite the unrealistically low values of
mean times to node failure, the simulation-based values are a good match to
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Table 7.1: Range of values of different simulation parameters

Parameter Meaning Range
c amount of data stored on each node 12 TB
n number of storage nodes 4 to 100
r replication factor 2, 3, 4
b average rebuild bandwidth at each

storage node
96 MB/s

N effective maximum number of nodes
from which distributed rebuild can
occur at full speed in parallel

no limit; 12 nodes

1/λ mean time to failure of a node 400 h to 10000 h
1/µ average time to read/write c amount

of data from/to a node during re-
build (1/µ = c/b)

35 h

Fλ node failure time distribution exponential; Weibull
with shape 0.7 to 5

Gµ node rebuild time distribution deterministic; expo-
nential

the theoretical estimates. This observation in conjunction with Remark 4.13
implies that the theoretical estimates will also be accurate for realistic values
of mean times to node failure, 1/λ, which are generally much higher.

7.3.1 Replication Factor 2

When sufficient network rebuild bandwidth is available, the MTTDL of two-
way replicated systems for clustered and declustered placement schemes are
given by (4.129)and (4.130), respectively:

MTTDLclus. ≈ µ

nλ2
for r = 2.

MTTDLdeclus. ≈ µ

2nλ2
for r = 2.

Figure 7.1 shows the comparison of theoretically predicted and simulation-
based MTTDL values for a system with replication factor 2 as the number
of nodes n in the system is varied. Figures 7.1a, 7.1b, and 7.1c, show the
MTTDL when the node failure distribution, Fλ, is exponential, Weibull with
shape parameter 1.2, and Weibull with shape parameter 0.7, respectively. It
is observed that the theoretically predicted values, although approximate, are
a good match to the simulation-based values as they typically lie within the
95% confidence intervals. In conjunction with Remark 4.13, this establishes
that the approximations used in theoretical analysis for replication factor two
are valid for values of λ/µ ≤ 35/10000 = 0.0035.
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(a) MTTDL of two-way replicated systems for exponen-
tial node failure time distribution.
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(b) MTTDL of two-way replicated systems for Weibull
node failure time distribution with shape parameter 1.2.
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Figure 7.1: MTTDL of two-way replicated systems with mean time to node
failure 1/λ = 10000 h and mean time to read all contents of a node during
rebuild 1/µ ≈ 35 h.



www.manaraa.com

7.3. Simulation Results 135

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

Time to data loss (in days)

E
m

pi
ric

al
 C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n 

F
un

ct
io

n

 

 

Exponential failure distribution
Weibull failure distribution
with shape 1.2

r = 2
1/λ = 10000 h
1/µ ≈ 35 h
n = 6 nodes
clustered placement
MTTDL = 2.9 × 104 days

Figure 7.2: Empirical cumulative distribution function of a two-way replicated
system.

From Figures 7.1a, 7.1b, and 7.1c, it is seen that the MTTDL is invariant
with respect to the failure distribution. However, the cumulative distribution
function does seem to depend on the underlying node failure distribution.
This is illustrated by Figure 7.2, in which the empirical cumulative distribution
function of a two-way replicated system with clustered placement is plotted for
exponential failure distribution and for Weibull failure distribution with shape
parameter 1.2. Although the MTTDL is the same under the two distributions,
there are observable differences in the cumulative distribution functions of their
times to data loss, especially for times to data loss less than 1000 days. The
probability that data loss occurs within shorter durations (of the order of 1000
days) is much higher for Weibull distribution with shape parameter 1.2 than
for exponential distribution.

When the network rebuild bandwidth is limited, and can only support up to
N nodes at full speed during distributed rebuild, the MTTDL for declustered
placement is given by (5.52):

MTTDLdeclus. ≈





µ

2nλ2
when n ≤ N + 1

µN

2n(n− 1)λ2
when n ≥ N + 1

for r = 2.



www.manaraa.com

136 Reliability Simulations

10
0

10
1

10
2

10
3

10
4

10
5

Number of nodes (n)

M
T

T
D

L 
(in

 d
ay

s)

 

 

clustered placement (theoretical)
declustered placement (theoretical)
clustered placement (simulated)
declustered placement (simulated)

r = 2
1/λ = 10000 h
1/µ ≈ 35 h
N = 12 nodes
deterministic rebuilds

Figure 7.3: MTTDL of two-way replicated systems when the network rebuild
bandwidth can support only up to N = 12 nodes at full speed during dis-
tributed rebuild.

The above expressions show that, when the network rebuild bandwidth is not
sufficient to perform distributed rebuild process at full speed, the MTTDL
becomes inversely proportional to the square of the number of nodes instead
of being inversely proportional to the number of nodes. This drastic change is
also confirmed by simulations, which matches theoretically predicted MTTDL
behavior as shown in Figure 7.3.

7.3.2 Replication Factor 3

When sufficient network rebuild bandwidth is available, the MTTDL of three-
way replicated systems for clustered and declustered placement schemes is
given by (4.131) and (4.132), respectively:

MTTDLclus. ≈ µ2

nλ3

M2
1 (Gµ)

M2(Gµ)
for r = 3.

MTTDLdeclus. ≈ (n− 1)µ2

4nλ3

M2
1

(
Gn−1

2
µ

)

M2

(
Gn−1

2
µ

) for r = 3.
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(a) MTTDL of three-way replicated systems for expo-
nential node failure time distribution.
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(b) MTTDL of three-way replicated systems for Weibull
node failure time distribution with shape parameter 1.2.
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(c) MTTDL of three-way replicated systems for Weibull
node failure time distribution with shape parameter 0.7.

Figure 7.4: MTTDL of three-way replicated systems with mean time to node
failure 1/λ = 1000 h and mean time to read all contents of a node during
rebuild 1/µ ≈ 35 h.
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Figure 7.5: MTTDL of a three-way replicated system under deterministic and
exponential rebuild time distributions.

Figure 7.4 shows the comparison of theoretically predicted and simulation-
based MTTDL values for a system with replication factor 3 and deterministic
rebuilds, as the number of nodes n in the system is varied. For deterministic re-
builds, the ratios of the moments in the above expressions evaluate to one. Fig-
ures 7.4a, 7.4b, and 7.4c, show the MTTDL when the node failure distribution,
Fλ, is exponential, Weibull with shape parameter 1.2, and Weibull with shape
parameter 0.7, respectively. It is observed that the theoretically predicted val-
ues, although approximate, are a good match to the simulation-based values
as they typically lie within the 95% confidence intervals. In conjunction with
Remark 4.13, this establishes that the approximations used in theoretical anal-
ysis for replication factor three are valid for values of λ/µ ≤ 35/1000 = 0.035.
It is also observed from Figures 7.1a, 7.1b, and 7.1c, that the MTTDL is in-
variant with respect to the failure distribution. On the hand, the MTTDL is
dependent on the rebuild distribution. As an example, if the rebuild distribu-
tion were exponential, the corresponding MTTDLs are given by (4.133) and
(4.133):

MTTDLclus. ≈ µ2

2nλ3
for r = 3 (exponential rebuilds).

MTTDLdeclus. ≈ (n− 1)µ2

8nλ3
for r = 3 (exponential rebuilds).

This is also confirmed by simulations, as shown in Figure 7.5.
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Figure 7.6: MTTDL of three-way replicated systems when the network re-
build bandwidth can support only up to N = 12 nodes at full speed during
distributed rebuild.

When the network rebuild bandwidth is limited, and can only support up
to N nodes at full speed during distributed rebuild, the MTTDL of declustered
placement is given by (5.53) for deterministic rebuild times:

MTTDLdeclus. ≈





µ2(n− 1)

4nλ3
when n ≤ N + 1

µ2N2

4n(n− 2)λ3
when n ≥ N + 2

for r = 3.

The change in the MTTDL behavior due to limited network rebuild bandwidth
is greater than that observed for replication factor two; it goes from being
constant with respect to the number of nodes when network rebuild bandwidth
is sufficient, to being inversely proportional to the square of the number of
nodes when the network rebuild bandwidth is limited. This is also confirmed
by simulations, as shown in Figure 7.6.

7.3.3 Replication Factor 4

When sufficient network rebuild bandwidth is available, the MTTDL of four-
way replicated systems for clustered and declustered placement schemes is
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Figure 7.7: MTTDL of four-way replicated systems with mean time to node
failure 1/λ = 400 h and mean time to read all contents of a node during rebuild
1/µ ≈ 35 h.

given by (4.135) and (4.136), respectively:

MTTDLclus. ≈ µ3

nλ4

M3
1 (Gµ)

M3(Gµ)
for r = 4.

MTTDLdeclus. ≈ (n− 1)2(n− 2)µ3

24nλ4

M3
1

(
Gn−1

2
µ

)

M3

(
Gn−1

2
µ

) for r = 4.

For replication factors 4 and above, the simulation run times become pro-
hibitively high even for large values of λ/µ. Furthermore, if λ/µ is made too
big, then the theoretical approximations may no longer hold. Figure 7.7 shows
the MTTDL of systems with λ/µ = 35/400 = 0.0875, for which the simulations
are close to the theoretically predicted values but do not match them as well
as they did for replication factors two and three. However, it was observed
through numerous simulations that the simulation curves were approaching
the corresponding theoretical curves as the ratio λ/µ was decreased. It is also
observed that, in spite of this difference in MTTDL values between theory
and simulation, the behavior of MTTDL with respect to the number of nodes
is well captured by the theoretical analysis. This is supported by the fact
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that the simulation curves have roughly the same slopes as the theoretically
predicted curves.

7.3.4 Erasure Coded Systems

Although the simulation based MTTDL values of erasure coded systems is
not presented here, it is expected that they will also closely match the corre-
sponding theoretically predicted values. This is because, the main differences
between the simulation of replication based systems and erasure coded sys-
tems, are that the rebuilds in erasure coded systems take a longer time, and
the number of nodes in an erasure coded system whose failure during rebuild
can cause an exposure level transition is higher.
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Conclusions and Future
Work 8
The problem of reliably maintaining data in a data storage system for time
periods far exceeding the lifetimes of individual storage nodes was considered
in this thesis. A model of a modern storage system was developed, which
was sufficiently comprehensive in including all the intricacies of the reliability
behavior of the system, but at the same time was simple enough to abstract
away from details that do not affect the system reliability. The validity of this
model was established by thoroughly considering all relevant empirical studies
of real-world storage systems.

A reliability analysis framework was developed around this model that en-
abled the analytical computation of mean time to data loss (MTTDL) of a
system under a variety of different design and parameter choices. This frame-
work was based on a series of approximations, each of which were shown to
hold true for real-world storage systems through rigorous arguments as well
as simulations. At the crux of this analytical framework lies the direct path
approximation. Using this approximation, it is shown that the MTTDL is
inversely proportional to the probability of the direct path to data loss dur-
ing rebuild. Then, using the concept of exposure levels, the probability of
direct path to data loss is written as a series of integrals which depend on
the conditional means of rebuild times at each exposure level, and the number
of nodes whose failure can cause an exposure level transition. The values of
these required quantities depend on the data placement, redundancy scheme,
and network bandwidth limitations. Therefore, by computing these quantities
for a specific data placement, redundancy scheme, and network bandwidth
limitation, and evaluating the integrals, the MTTDL of the system can be
found.

Firstly, the analytical framework described above was applied to replication
based systems using clustered and declustered data placement. It was found
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that the MTTDL of clustered placement scheme was inversely proportional
to the number of nodes in the system for all replication factors, whereas the
MTTDL of declustered placement scheme scaled differently with the number
of nodes for different replication factors. For a replication factor of two, the
MTTDL of declustered placement was found to scale inversely proportional
to the number of nodes, just like the MTTDL of clustered placement. For a
replication factor of three, the MTTDL of declustered placement was found to
be roughly invariant with respect to the number of nodes. This implies that,
for a sufficiently large system, the declustered placement scheme will have a
higher MTTDL than the clustered placement scheme. For a replication factor
higher than three, the MTTDL of declustered placement was found to increase
with the number of nodes in the system. There were two main reasons for this.
Firstly, by placing replicas across several nodes in the system, a system with
declustered placement was able to benefit from an extremely fast distributed
rebuild process that rebuilt from all surviving nodes in parallel. A fast rebuild
process reduces the probability that further node failures occur before the com-
pletion of rebuild that will eventually cause data loss. Secondly, by placing
replicas across several nodes in the system, a system with declustered place-
ment was able to benefit from an intelligent rebuild process that first rebuilds
the data with the least number of surviving replicas. This benefit came from
the fact that the amount of data with the least number of surviving replicas
decreases significantly at each successive exposure level. However, the afore-
mentioned MTTDL results for declustered placement hold true only as long
as there is sufficient network rebuild bandwidth that is capable of supporting
the distributed rebuild process at full speed using the read-write bandwidth
available at all surviving nodes.

The computation of MTTDL under network rebuild bandwidth limitations
yields completely different results for declustered placement, especially when
the distributed rebuild process is severely hindered by limited network band-
width. For a replication factor of two, the MTTDL of a declustered placement
scheme, whose distributed rebuild process is unable to take place at full speed
due to limited network bandwidth, scales inversely proportional to the square
of the number of nodes, instead of inversely proportional to the number of
nodes (which was the case when there was no network bandwidth limitation).
Similarly, for a replication factor of three, the MTTDL of declustered place-
ment scheme is seen to be inversely proportional to the square of the number
of nodes under limited network rebuild bandwidth. For a replication factor of
three, it was shown that much higher reliability can be achieved by choosing a
symmetric data placement with a spread factor that is limited to the maximum
number of nodes that the network can support at full speed during rebuild.
More generally, the MTTDL expressions under network rebuild bandwidth
limitations were obtained for all replication factors and for all possible spread
factors. In a dynamically changing storage system, using these expressions,
one can find the placement scheme with a spread factor that maximizes the
reliability for a given number of nodes and for a given network rebuild band-
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width, and continually adapt the data placement to changes in the system to
maintain a high level reliability.

Next, the reliability of erasure coded systems, which are a superset of
replication based systems, was studied using the analytical framework. It was
found that the MTTDL behavior of erasure coded systems with respect to the
number of nodes in the system is similar to the MTTDL behavior of replication-
based systems. The behavior was found to be the same if “replication factor”
was replaced by “number of parities”. The MTTDL expressions for general
maximum distance separable codes were computed and it was seen that there
is a trade-off between storage efficiency and reliability.

Finally, detailed simulations were performed to test the validity of the
analytical framework and its predictions. Despite the fact that the simulations
avoided all the approximations made in the analytical framework, it was found
that the simulation-based MTTDL values matched the theoretically predicted
values for a wide range of system parameters, including real-world parameters.
This provided a strong evidence for the applicability of the reliability analysis
framework to real-world data storage systems.

For future work, the developed reliability analysis framework can be ap-
plied or extended to other system models. For instance, latent, or undetected,
errors in the data are known to be a serious reliability concern in large storage
systems. Such errors may render the rebuild processes ineffective and there-
fore increases the chances of data loss. One direction of research would be to
include a model for latent errors within this framework and study its effects
on the system reliability. Another example is the reliability of data storage
systems that use different levels of redundancy to store different types of data.
An interesting problem would be to find out what data placement is best for
such systems in terms of reliability. Another direction of research is to char-
acterize data unavailability due to temporary node unavailabilities. This is a
challenging problem as node unavailabilities are known to be correlated and
occur more frequently than node failures.
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Mean Fully-Operational
Period of the System A
The following derivation of the mean fully-operational period of a system has
been adapted from [26, Chap. 2, pp. 139–140]. Consider a storage system con-
sisting of n nodes each of which have a mean lifetime of 1/λ. The node failures
are assumed to be independent and identically distributed with distribution
function Fλ. Following each node failure, the failed node is replaced by a new
node and lost data is restored after an average time of 1/µ. For t ≥ 0,

ν
(i)
t :=

{
1, if node is operational at time t,
0, if node is under rebuild at time t.

(A.1)

Then the node availability at time t is given by the probability

a
(i)
t = Pr{ν(i)

t = 1}. (A.2)

By Lemma 1, it follows that the sequences a
(i)
t converge to a:

lim
t→∞

a
(i)
t =

1/λ

1/λ+ 1/µ
= a, for i = 1, · · · , n. (A.3)

For each node i, i = 1, · · · , n, let A(i)
t and E

(i)
t be the age of the node since its

last replacement at time t, and the time until the next failure of the node at
time time t, respectively. In addition, let

F̃
(i)
λ,At

(τ) := Pr{A(i)
t ≤ τ |ν(i)

t = 1}, (A.4)

F̃
(i)
λ,Et

(τ) := Pr{E(i)
t ≤ τ |ν(i)

t = 1}, (A.5)

denote the distributions of the age and excess of node i at time t, respec-
tively. According to Lemma 2, the above sequences, F̃

(i)
λ,At

and F̃
(i)
λ,Et

, converge

pointwise to F̃λ, that is,

lim
t→∞

F̃
(i)
λ,At

(τ) = lim
t→∞

F̃
(i)
λ,Et

(τ) = F̃λ(τ), (A.6)
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for i = 1, · · · , n, where F̃λ is given by

F̃λ(τ) = λ

∫ τ

0

(1− Fλ(x))dx. (A.7)

If E(i)(t,∆t, τ) denotes the event that the node i was renewed in the interval
(t−∆t, t), that it operates without failure in (t, t+ τ), and that the remaining
nodes operate without failure in (t, t + τ), then the event E(t,∆t, τ) can be
written as the disjoint union

E(t,∆t, τ) = E(1)(t,∆t, τ) ∪ · · · ∪ E(n)(t,∆t, τ), (A.8)

by ignoring events that have probabilities of higher order in ∆t, such as more
than one rebuild event within a ∆t time period. Therefore,

Pr{E(t,∆t, τ)} =
n∑

i=1

Pr{E(i)(t,∆t, τ)}

=
n∑

i=1

[
Pr{A(i)

t ≤ ∆t, E
(i)
t > τ, ν

(i)
t = 1}

×
n∏

j=1
j 6=i

Pr{E(j)
t > τ, ν

(j)
t = 1}

]
. (A.9)

The first term in the summation above can be expanded as

Pr{A(i)
t ≤ ∆t, E

(i)
t > τ, ν

(i)
t = 1} = Pr{ν(i)

t = 1}Pr{A(i)
t ≤ ∆t|ν(i)

t = 1}
·Pr{E(i)

t > τ |A(i)
t ≤ ∆t, ν

(i)
t = 1}

= a
(i)
t F̃

(i)
λ,At

(∆t)(1− Fλ,∆t(τ)) (A.10)

where,

Fλ,∆t(τ) := Pr{E(i)
t ≤ τ |A(i)

t ≤ ∆t, ν
(i)
t = 1}. (A.11)

It can be seen that (A.10) follows from (A.2) and (A.4). The term Fλ,∆t(τ)
can be seen to converge pointwise to Fλ(τ) as ∆t tends to zero:

lim
∆t→0

Fλ,∆t(τ) = lim
∆t→0

Pr{E(i)
t ≤ τ |A(i)

t ≤ ∆t, ν
(i)
t = 1}

= Pr{T (i)
F ≤ τ} (A.12)

= Fλ(τ). (A.13)

Here, (A.12) follows from the fact that, as ∆t tends to zero, the excess time

of node i, E
(i)
t , given that its age, A

(i)
t , is less than ∆t, tends to the node’s

lifetime, T
(i)
F .
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Furthermore, as F̃
(i)
λ,At

(∆t) converges to F̃λ(∆t) by Lemma 2, using (A.7),

we can write F̃
(i)
λ,At

(∆t) as

F̃
(i)
λ,At

(∆t) = λ∆t+ o(∆t), (A.14)

where the small-‘o’ notation is used to denote that the term o(∆t) tends to
zero faster than ∆t as ∆t tends to zero. Therefore, (A.10) reduces to

Pr{A(i)
t ≤ ∆t, E

(i)
t > τ, ν

(i)
t = 1} = a

(i)
t λ∆t(1− Fλ,∆t(τ))

+ o(∆t). (A.15)

Using (A.2) and (A.5), the product term in (A.9) can be expanded as follows:

n∏

j=1
j 6=i

Pr{E(j)
t > τ, ν

(j)
t = 1} =

n∏

j=1
j 6=i

Pr{ν(j)
t = 1}Pr{E(j)

t > τ |ν(j)
t = 1}

=
n∏

j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ)). (A.16)

Substituting (A.15) and (A.16) into (A.9), we finally get

Pr{E(t,∆t, τ)} = λ∆t(1− Fλ,∆t(τ))×
n∑

i=1

[
a
(i)
t

n∏

j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ))

]

+ o(∆t). (A.17)

Similar to the calculations above for the probability Pr{E(t,∆t, τ}, the
probability Pr{E(t,∆t)} can be computed by writing E(t,∆t) as a disjoint
union of events. The resulting expression is:

Pr{E(t,∆t)} = λ∆t×
n∑

i=1

[
a
(i)
t

n∏

j=1
j 6=i

a
(j)
t

]
+ o(∆t). (A.18)

Substituting (A.17) and (A.18) into (3.11) and computing the limit as ∆t
tends to zero, we get

pt(τ) = lim
∆t→0

Pr{E(t,∆t, τ)}
Pr{E(t,∆t)}

= (1− Fλ(τ))×

∑n
i=1

[
a
(i)
t

∏n
j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ))
]

∑n
i=1

[
a
(i)
t

∏n
j=1
j 6=i

a
(j)
t

] . (A.19)
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Using (A.3), (A.6), and (A.7), (A.19) yields

lim
t→∞

pt(τ) = (1− Fλ(τ))(1− F̃λ(τ))
(n−1)

= − 1

nλ

d

dτ
(1− F̃λ(τ))

n, (A.20)

Thus,

T = lim
t→∞

Tt = lim
t→∞

∫ ∞

0

pt(τ)dτ. (A.21)

From (A.19), it can be seen that pt(τ) ≤ 1− F (τ). As 1− F (τ) is integrable,
by the dominated convergence theorem, the limit and the integral can be
exchanged in the above equation. Therefore,

T =

∫ ∞

0

lim
t→∞

pt(τ)dτ

=

∫ ∞

0

− 1

nλ

d

dτ
(1− F̃λ(τ))

n =
1

nλ
. (A.22)
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Direct Path
Approximation B
Let qj→r, j = 1, 2, · · · , r− 1, denote the probability that, once the system has
entered exposure level j, it goes to exposure level r prior to going to exposure
level j − 1. Note that the probability of the direct path to data loss following
the first node failure is then equal to q1→r. Let the conditional probability of
transition from exposure level j to j + 1 be equal to ǫj . For generally reliable
systems, (4.25) reveals that ǫj ≪ 1 (see Remark 4.1).

We now proceed to derive qj→r, by conditioning on the subsequent transi-
tion given that the system is at exposure level j. It follows that

qj→r = ǫj h(j+1)→r + (1− ǫj) 0 , for j = 1, · · · , r − 1, (B.1)

where h(j+1)→r denotes the probability that once the system has entered ex-
posure level j + 1, it goes to exposure level r prior to going to exposure level
j−1. This probability is derived by conditioning on which of the two exposure
levels j and r is subsequently entered first, that is, for j = 1, · · · , r − 1,

h(j+1)→r = q(j+1)→r + (1− q(j+1)→r) qj→r. (B.2)

The first term of the summation accounts for the event that exposure level r
is entered first, whereas the second term accounts for the event that exposure
level j is entered first. In the latter case, the probability that the exposure
level r is subsequently entered prior to entering exposure level j − 1 is given
by qj→r, according to its definition. Combining (B.1) and (B.2) yields, for
j = 1, · · · , r − 1,

qj→r = ǫj(q(j+1)→r + (1− q(j+1)→r) qj→r). (B.3)

Solving (B.3) for qj→r yields the recursive relation

qj→r =
ǫj q(j+1)→r

1− ǫj (1− q(j+1)→r)
, for j = 1, · · · , r − 1. (B.4)
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In particular, for ǫj ≪ 1, it follows that

qj→r ≈ ǫj q(j+1)→r , for j = 1, · · · , r − 1. (B.5)

Consequently, repeatedly applying (B.5) yields

qj→r ≈
r−1∏

i=j

ǫi , for j = 1, · · · , r − 1. (B.6)

Note that the product on the right hand side of the above equation is equal
to the probability of occurrence of the direct path j → j + 1 → · · · → r from
exposure level j to data loss. Thus, for j = 1, Eq. (B.6) leads to the result
sought:

PDL = q1→r ≈
r−1∏

i=1

ǫi, for ǫi ≪ 1, i = 1, · · · , r − 1, (B.7)

namely, for a highly reliable system, the probability that, once the system has
entered exposure level one, it goes to exposure level r prior to reaching exposure
level zero, is equal to the probability of the direct path 1 → 2 → · · · → r to
data loss for a highly reliable system.
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Data not Rebuilt during
an Exposure Level
Transition C
Consider a storage system under rebuild which entered a particular exposure
level, say e, at time t. Let R be the time required to rebuild the most-exposed
data and return to the previous exposure level, e − 1. Also, let R have mean
1/µ and distribution Gµ that satisfies condition (2.11). Suppose there are ñ
nodes whose failure during rebuild can cause the system to enter the next
exposure level, e + 1. Let the times to failures of these nodes at time t by
E

(i)
t , i = 1, · · · , ñ. According to Lemma 2 and the node-failure independence

assumption E
(i)
t are independent and identically distributed according to F̃λ

in the stationary period of the system. Let

F := min
i∈{1,··· ,ñ}

E
(i)
t (C.1)

denote the time taken for a node failure to occur that can cause the system to
enter the next exposure level, e+ 1.

Given that a node failure occurs before the completion of rebuild causing
the system to enter the next exposure level, we are interested in the fraction
α of rebuild time left when that node failure occurs, that is, we are interested
in

α :=
R− F

R

∣∣∣∣F < R. (C.2)

This fraction is a random variable whose distribution depends on the distribu-
tions of F and R. The distribution function of α is computed as follows. For
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x ∈ (0, 1],

Pr{α ≤ x} = Pr

{
R− F

R
≤ x

∣∣∣∣F < R

}
(C.3)

= Pr {F ≥ R(1− x)|F < R} (C.4)

=
Pr {F ≥ R(1− x), F < R}

Pr {F < R} (C.5)

=
Pr {R(1− x) ≤ F < R}

Pr {F < R} (C.6)

=
Pr {F < R} − Pr {F < R(1− x)}

Pr {F < R} (C.7)

= 1− Pr {F < R(1− x)}
Pr {F < R} (C.8)

= 1− Pr{mini∈{1,··· ,ñ} E
(i)
t < R(1− x)}

Pr{mini∈{1,··· ,ñ} E
(i)
t < R}

(C.9)

= 1− 1− Pr{mini∈{1,··· ,ñ} E
(i)
t ≥ R(1− x)}

1− Pr{mini∈{1,··· ,ñ} E
(i)
t ≥ R}

(C.10)

= 1− 1− Pr{E(i)
t ≥ R(1− x) ∀ i ∈ {1, · · · , ñ}}

1− Pr{E(i)
t ≥ R ∀ i ∈ {1, · · · , ñ}}

(C.11)

= 1− 1−∏ñ
i=1 Pr{E

(i)
t ≥ R(1− x)}

1−∏ñ
i=1 Pr{E

(i)
t ≥ R}

(C.12)

= 1− 1− (Pr{E(1)
t ≥ R(1− x)})ñ

1− (1− Pr{E(1)
t < R})ñ

(C.13)

= 1− 1− (1− Pr{E(1)
t < R(1− x)})ñ

1− (1− Pr{E(1)
t < R})ñ

. (C.14)

Here, (C.5) follows from Bayes’ theorem, (C.9) follows by substituting (C.1) in

(C.8), (C.12) follows from the fact that E
(i)
t , i = 1, · · · , ñ, are independent, and

(C.13) follows from the fact that E
(i)
t , i = 1, · · · , ñ, are identically distributed.

It is shown in Appendix D that

Pr{E(1)
t < R} =

λ

µ
+ o

(
λ

µ

)
, (C.15)

Pr{E(1)
t < R(1− x)} = (1− x)

λ

µ
+ o

(
(1− x)

λ

µ

)
. (C.16)

Therefore, substituting (C.15) and (C.16) in (C.14), we get

Pr{α ≤ x} = 1− ñ(1− x)λ/µ+ o((1− x)λ/µ)

ñλ/µ+ o(λ/µ)
≈ x. (C.17)
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This means that, for systems with generally reliable nodes that satisfy (2.10)
and (2.11), the fraction α of most-exposed data not rebuilt due to an exposure
level transition is uniformly distributed between zero and one.
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Probability of Node
Failure during Rebuild D
According to (3.8) and (A.7), it holds that

Pr{Et < R} =

∫ ∞

τ=0

F̃λ(τ)dGµ(τ)

=

∫ ∞

τ=0

λ

∫ τ

t=0

(1− Fλ(t))dtdGµ(τ).

Changing the order of integrals, yields after some manipulations

Pr{Et < R} =
λ

µ

(
1− µ

∫ ∞

t=0

Fλ(t)(1−Gµ(t))dt

)
.

In the last step above, we used the fact that integrating the complementary
cumulative distribution function 1−Gµ(t) gives the mean 1/µ. As the functions
Fλ and Gµ satisfy (2.22) and (2.23) respectively, it can be seen that the second
term inside the parentheses is o(1). Therefore,

Pr{Et < R} = λ/µ+ o(λ/µ).

Similarly the following can also be shown for any x ∈ (0, 1):

Pr{Et < Rx} = xλ/µ+ o(xλ/µ).
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